分析 (1)根據(jù)向量的數(shù)量積公式得出f(x)解析式,使用和角公式化簡,結(jié)合正弦函數(shù)的性質(zhì)得出答案;
(2)根據(jù)f(C)=$\sqrt{3}$得出C,根據(jù)同角三角函數(shù)的關(guān)系計(jì)算sinB,由正弦定理得出b.
解答 解:(1)f(x)=sinx+$\sqrt{3}$cosx=2sin(x+$\frac{π}{3}$),
∴f(x)的最小正周期T=2π,f(x)的最大值為2.
(2)∵f(C)=2sin(C+$\frac{π}{3}$)=$\sqrt{3}$,∴sin(C+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∵0$<C<\frac{π}{2}$,∴C=$\frac{π}{3}$.
∵cosB=$\frac{1}{3}$,∴sinB=$\frac{2\sqrt{2}}{3}$.
由正弦定理得$\frac{sinB}=\frac{c}{sinC}$,∴$\frac{\frac{2\sqrt{2}}{3}}=\frac{\sqrt{6}}{\frac{\sqrt{3}}{2}}$,
解得:b=$\frac{8}{3}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換,正弦定理,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {3,4} | C. | {2,3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{4}$) | ||
C. | $\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{3}$) | D. | $\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-2x | B. | y=3x | C. | y=-3x | D. | y=2x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com