精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)如圖所示,矩形的對角線交于點G,AD⊥平面,,,上的點,且BF⊥平面ACE

(1)求證:平面;
(2)求三棱錐的體積.
(1)參考解析;(2).

試題分析:(1)因為要證平面,線面平行要轉化為直線垂直于平面內兩條直線,通過分析可得.再通過線面垂直從而可證的直線.這樣既可得到直線與平面的垂直.本小題的關鍵是通過線線關系與線面關系相互轉化.
(2)根據題意可得直線垂直于平面.所以三棱錐的體積.可以表示為.其中分別可以求出來.既可得到所求的體積.
試題解析:(1)證明:∵平面,
平面,則                 
平面,則
平面             6分
(2)平面,,
平面,平面
中點,中點,
,          
平面,
中,,   
  
        12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是邊長為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點.

(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:平面BDGH//平面AEF;
(Ⅲ)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,PA平面ABCD,四邊形ABCD為矩形,PA=AB=,AD=1,點F是PB的中點,點E在邊BC上移動.

(I)求三棱錐E—PAD的體積;
(II)試問當點E在BC的何處時,有EF//平面PAC;
(1lI)證明:無論點E在邊BC的何處,都有PEAF.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐中,底面是邊長為1的正方形,平面, ,,的中點,在棱上.

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知一圓柱內接于球O,且圓柱的底面直徑與母線長均為2,則球O的表面積為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在棱長為4的正方體ABCD—A1B1C1D1中,E、F分別是AD,A1D1的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面A1B1C1D1上運動,則線段MN的中點P在二面角A—A1 D1—B1內運動所形成的軌跡(曲面)的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若兩個球的表面積之比為,則這兩個球的體積之比為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知在棱長為3的正方體中,P,M分別為線段,上的點,若,則三棱錐的體積為        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知矩形ABCD的頂點在半徑為5的球O的球面上,且,則棱錐O-ABCD的側面積為(   )
A.B.44C.20D.46

查看答案和解析>>

同步練習冊答案