設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足構(gòu)成等比數(shù)列.

(1) 證明:;

(2) 求數(shù)列的通項(xiàng)公式;

(3) 證明:對一切正整數(shù),有

【解析】(1)當(dāng)時(shí),,

(2)當(dāng)時(shí),,

,

當(dāng)時(shí),是公差的等差數(shù)列.

構(gòu)成等比數(shù)列,,,解得,

由(1)可知,

 是首項(xiàng),公差的等差數(shù)列.

 數(shù)列的通項(xiàng)公式為.

(3)

【解析】本題考查很常規(guī),第(1)(2)兩問是已知,是等差數(shù)列,第(3)問只需裂項(xiàng)求和即可,估計(jì)不少學(xué)生猜出通項(xiàng)公式,跳過第(2)問,作出第(3)問.本題易錯(cuò)點(diǎn)在分成,來做后,不會(huì)求,沒有證明也滿足通項(xiàng)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}和{bn}滿足5an5bn,5an+1成等比數(shù)列,lgbn,lgan+1,lgbn+1成等差數(shù)列,且a1=1,b1=2,a2=3,求通項(xiàng)an、bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,已知2a2=a1+a3,數(shù)列{
Sn
}
是公差為d的等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式(用n,d表示);
(2)設(shè)c為實(shí)數(shù),對滿足m+n=3k且m≠n的任意正整數(shù)m,n,k,不等式Sm+Sn>cSk都成立.求證:c的最大值為
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,已知2a2=a1+a3,數(shù)列{
Sn
}
是公差為d的等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式(用n,d表示);
(Ⅱ)設(shè)c為實(shí)數(shù),對滿足m+n=3k且m≠n的任意正整數(shù)m,n,k,不等式Sm+Sn>cSk都成立.求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足4Sn=
a
2
n+1
-4n-1,n∈N*
,且a2,a5,a14構(gòu)成等比數(shù)列.
(1)證明:a2=
4a1+5

(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對一切正整數(shù)n,有
1
a1a2
+
1
a2a3
+…+
1
anan+1
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,對于任意的正整數(shù)n都有等式Sn=
1
4
a
2
n
+
1
2
an
(n∈N*)成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令數(shù)列bn=|c|
an
2n
,Tn
為數(shù)列{bn}的前n項(xiàng)和,若Tn>8對n∈N*恒成立,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案