已知函數(shù)f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,
(1)證明:a>0且-2<
ba
<-1
;
(2)證明:函數(shù)f(x)在(0,1)內(nèi)有兩個(gè)零點(diǎn).
分析:(1)先將f(0)>0,f(1)>0,利用函數(shù)式中的a,b,c進(jìn)行表示,再結(jié)合等式關(guān)系利用不等式的基本性質(zhì)即可得到a和
a
b
的范圍即可.
(2)由(1)中結(jié)論,我們可以判斷函數(shù)的對(duì)稱(chēng)軸在區(qū)間(0,1)之間,而且能判斷出頂點(diǎn)縱坐標(biāo)小于0,進(jìn)而根據(jù)零點(diǎn)存在定理得到答案.
解答:證明:(1)∵f(0)>0,∴c>0,
又∵f(1)>0,即3a+2b+c>0.①
而a+b+c=0即b=-a-c代入①式,
∴3a-2a-2c+c>0,即a-c>0,∴a>c.
∴a>c>0.又∵a+b=-c<0,∴a+b<0.
∴1+
b
a
<0,∴
b
a
<-1.
又c=-a-b,代入①式得,
3a+2b-a-b>0,∴2a+b>0,
∴2+
b
a
>0,∴
b
a
>-2.故-2<
b
a
<-1.
(2)由(1)中-2<
b
a
<-1,
1
3
b
-3a
2
3

即函數(shù)f(x)=3ax2+2bx+c圖象的對(duì)稱(chēng)軸x=
b
-3a
在區(qū)間(0,1)上
又∵f(
b
-3a
)=
12ac-4b2
12a
<0
故函數(shù)f(x)在(0,
b
-3a
),(
b
-3a
,1)內(nèi)各有一個(gè)零點(diǎn)
故函數(shù)f(x)在(0,1)內(nèi)有兩個(gè)零點(diǎn)
點(diǎn)評(píng):本題主要考查二次函數(shù)的基本性質(zhì)與不等式的應(yīng)用等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3•2x-1,則當(dāng)x∈N時(shí),數(shù)列{f(n+1)-f(n)}( 。
A、是等比數(shù)列B、是等差數(shù)列C、從第2項(xiàng)起是等比數(shù)列D、是常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有滿足條件的m的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x|x<a}.
(1)若A⊆B,求實(shí)數(shù)a的取值范圍;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-ax
a-1
(a≠1)在區(qū)間(0,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)h(x)=[f(x)+1]•g(x)的值域;
(2)如果對(duì)任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案