9.將一條5米長的繩子隨機(jī)的切斷為兩段,則兩段繩子都不短于1米的概率為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

分析 將一條5米長的繩子隨機(jī)的切斷為兩段,則兩段繩子都不短于1米,即在距離兩端分別至少為1米,關(guān)鍵幾何概型公式可得.

解答 解:由題意,只要在距離兩端分別至少為1米處剪斷,
滿足題意的位置由3米,由幾何概型公式得到所求概率為$\frac{5-2}{5}=\frac{3}{5}$;
故選B.

點(diǎn)評 本題考查了幾何概型的概率求法;關(guān)鍵是明確剪斷的地方對應(yīng)的繩子長度,利用幾何概型的公式解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=cosxB.y=-|x|+1C.y=2|x|D.$y={log_{\frac{1}{2}}}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.用秦九韶算法計(jì)算多項(xiàng)式f(x)=5x5+4x4+3x3+2x2+x+1當(dāng)x=4的值時(shí),乘法運(yùn)算的次數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.計(jì)算$\root{3}{(2-π)^{3}}$+$\sqrt{(3-π)^{2}}$的值為( 。
A.5B.-1C.2π-5D.5-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=|x+1|的單調(diào)遞增區(qū)間為[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)A(0,2),B(4,6),$\overrightarrow{OM}$=t1$\overrightarrow{OA}$+t2$\overrightarrow{AB}$,其中t1、t2為實(shí)數(shù);
(1)若點(diǎn)M在第二或第三象限,且t1=2,求t2的取值范圍;
(2)求證:當(dāng)t1=1時(shí),不論t2為何值,A、B、M三點(diǎn)共線;
(3)若t1=a2,$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,且△ABM的面積為12,求a和t2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a>1,x≥1,y≥1,且loga2x+loga2y=loga(a4x4)+loga(a4y4),則loga(xy)的取值范圍是[$2\sqrt{3}-2$,$4+4\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知y=x2+4ax-2在區(qū)間(-∞,4]上為減函數(shù),則a的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)的定義域?yàn)椋?2,1),則函數(shù)f(2x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-$\frac{1}{2}$,1)B.(-5,1)C.($\frac{1}{2}$,1)D.(-2,1)

查看答案和解析>>

同步練習(xí)冊答案