【題目】如圖,A,B,C,D四點(diǎn)在同一圓上,BC與AD的延長(zhǎng)線(xiàn)交于點(diǎn)E,點(diǎn)F在BA的延長(zhǎng)線(xiàn)上.

(1)若 = , =1,求 的值;
(2)若EF2=FAFB,證明:EF∥CD.

【答案】
(1)解:∵A,B,C,D四點(diǎn)共圓,

∴∠ECD=∠EAB,∠EDC=∠B

∴△EDC∽△EBA,可得 = =

=( 2,即 =( 2

=


(2)解:證明:∵EF2=FAFB,

= ,

又∵∠EFA=∠BFE,

∴△FAE∽△FEB,可得∠FEA=∠EBF,

又∵A,B,C,D四點(diǎn)共圓,

∴∠EDC=∠EBF,

∴∠FEA=∠EDC,

∴EF∥CD.


【解析】(1)根據(jù)圓內(nèi)接四邊形的性質(zhì),可得∠ECD=∠EAB,∠EDC=∠B,從而△EDC∽△EBA,所以有 = = ,利用比例的性質(zhì)可得 =( 2 , 得到 = ;(2)根據(jù)題意中的比例中項(xiàng),可得 = ,結(jié)合公共角可得△FAE∽△FEB,所以∠FEA=∠EBF,再由(I)的結(jié)論∠EDC=∠EBF,利用等量代換可得∠FEA=∠EDC,內(nèi)錯(cuò)角相等,所以EF∥CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在國(guó)慶黃金周的促銷(xiāo)活動(dòng)中,對(duì)10月1日9時(shí)至14時(shí)的銷(xiāo)售額進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.已知9時(shí)至10時(shí)的銷(xiāo)售額為3萬(wàn)元,則11時(shí)至12時(shí)的銷(xiāo)售額為萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,A,B兩點(diǎn)為噴泉,圓心O為AB的中點(diǎn),其中OA=OB=a米,半徑OC=10米,市民可位于水池邊緣任意一點(diǎn)C處觀賞.

(1)若當(dāng)∠OBC= 時(shí),sin∠BCO= ,求此時(shí)a的值;
(2)設(shè)y=CA2+CB2 , 且CA2+CB2≤232.
(i)試將y表示為a的函數(shù),并求出a的取值范圍;
(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)C處觀賞噴泉時(shí),觀賞角度∠ACB的最大值不小于 ,試求A,B兩處噴泉間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(mod m),例如10≡4(mod 6).下面程序框圖的算法源于我國(guó)古代聞名中外的(中國(guó)剩余定理),執(zhí)行該程序框圖,則輸出的n等于(

A.17
B.16
C.15
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某茶樓有四類(lèi)茶飲,假設(shè)為顧客準(zhǔn)備泡茶工具所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計(jì)以往為100位顧客準(zhǔn)備泡茶工具所需的時(shí)間(t),結(jié)果如下:

類(lèi)別

鐵觀音

龍井

金駿眉

大紅袍

顧客數(shù)(人)

20

30

40

10

時(shí)間t(分鐘/人)

2

3

4

6

注:服務(wù)員在準(zhǔn)備泡茶工具時(shí)的間隔時(shí)間忽略不計(jì),并將頻率視為概率.
(1)求服務(wù)員恰好在第6分鐘開(kāi)始準(zhǔn)備第三位顧客的泡茶工具的概率;
(2)用X表示至第4分鐘末已準(zhǔn)備好了工具的顧客人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分16分)

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2ann∈N*.

1)試求出S1,S2,S3,S4,并猜想Sn的表達(dá)式;

2)用數(shù)學(xué)納法證明你的猜想,并求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義域?yàn)?/span>的單調(diào)函數(shù),對(duì)于任意的,都有,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,2asin A=(2b+c)sin B+(2c+b)sin C.

且sin B+sin C=1,則△ABC是(  )

A. 等腰鈍角三角形 B. 等腰直角三角形 C. 鈍角三角形 D. 直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O過(guò)平行四邊形ABCT的三個(gè)頂點(diǎn)B,C,T,且與AT相切,交AB的延長(zhǎng)線(xiàn)于點(diǎn)D.

(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點(diǎn),且DE=DF,求∠A.

查看答案和解析>>

同步練習(xí)冊(cè)答案