17.已知函數(shù)f(x)=$\frac{1}{{{2^x}+1}}$,則f(log23)+f(log2$\frac{1}{3}$)=1.

分析 由f(log23)+f(log2$\frac{1}{3}$)=$\frac{1}{{2}^{lo{g}_{2}3}+1}$+$\frac{1}{{2}^{lo{g}_{2}\frac{1}{3}}+1}$,利用對(duì)數(shù)性質(zhì)、運(yùn)算法則能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\frac{1}{{{2^x}+1}}$,
∴f(log23)+f(log2$\frac{1}{3}$)
=$\frac{1}{{2}^{lo{g}_{2}3}+1}$+$\frac{1}{{2}^{lo{g}_{2}\frac{1}{3}}+1}$
=$\frac{1}{4}+\frac{1}{\frac{1}{3}+1}$
=$\frac{1}{4}+\frac{3}{4}$
=1.
故答案為:1.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)性質(zhì)、運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2+$\frac{a}{x}$.
(1)判斷f(x)的奇偶性并說(shuō)明理由;
(2)當(dāng)a=16時(shí),判斷f(x)在x∈(0,2]上的單調(diào)性并用定義證明;
(3)試判斷方程x3-2016x+16=0在區(qū)間(0,+∞)上解的個(gè)數(shù)并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷(xiāo)售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得表:
日需求量n89101112
頻數(shù)101015105
①假設(shè)該店在這50天內(nèi)每天購(gòu)進(jìn)10件該商品,求這50天的日利潤(rùn)(單位:元)的平均數(shù);
②若該店一天購(gòu)進(jìn)10件該商品,記“當(dāng)天的利潤(rùn)在區(qū)間[400,550]”為事件A,求P(A)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{2π}{3}$個(gè)單位,所得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為( 。
A.$(\frac{π}{12},0)$B.$(\frac{π}{6},0)$C.$(-\frac{π}{12},0)$D.$(\frac{π}{3},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=2x+2ax+b且f(-1)=$\frac{5}{2}$,f(0)=2.
(1)求a,b的值; 判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(3)若關(guān)于x的方程mf(x)=2-x在[-1,1]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若S2=7,an+1=2Sn+1,n∈N*,則S5=202.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知全集U={-1,0,1,2},集合A={-1,2},則∁UA={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知集合M={2,3,5},集合N={3,4,5},則M∪N={2,3,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長(zhǎng)A1C1至點(diǎn)P,使C1P=A1C1,連接AP交棱CC1于點(diǎn)D.以A1為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示.
(1)寫(xiě)出A1、B、B1、C、D、P的坐標(biāo);
(2)求異面直線A1B與PB1所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案