【題目】函數(shù)f(x)的圖象如圖所示,曲線BCD為拋物線的一部分.
(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
【答案】(1) (2)或.
【解析】
(1)當(dāng)﹣1≤x≤0時(shí)圖形為直線,根據(jù)兩點(diǎn)坐標(biāo)可求出解析式;當(dāng)0<x≤3時(shí),函數(shù)圖象為拋物線,設(shè)函數(shù)解析式為y=a(x﹣1)(x﹣3),帶入坐標(biāo)點(diǎn)可求出拋物線方程;
(2)函數(shù)f(x)圖形與直線y=1的交點(diǎn)橫坐標(biāo)即為所求x的值.
(1)當(dāng)-1≤x≤0時(shí),函數(shù)圖象為直線且過點(diǎn)(-1,0)(0,3),直線斜率為k=3,
所以y=3x+3;
當(dāng)0<x≤3時(shí),函數(shù)圖象為拋物線,設(shè)函數(shù)解析式為y=a(x-1)(x-3),
當(dāng)x=0時(shí),y=3a=3,解得a=1,所以y=(x-1)(x-3)=x2-4x+3,
所以.
(2)當(dāng)x∈[-1,0],令3x+3=1,解得;
當(dāng)x∈(0,3],令x2-4x+3=1,解得,
因?yàn)?/span>0<x≤3,所以x=,
所以或;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax-1(a>0且a≠1).
(1)若函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)P(3,4),求a的值;
(2)當(dāng)a變化時(shí),比較f(lg)與f(-2.1)的大小,并寫出比較過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn),過作拋物線的動(dòng)弦, ,并設(shè)它們的斜率分別為, .
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求證:直線的斜率為定值,并求出其值;
(III)若,求證:直線恒過定點(diǎn),并求出其坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列各函數(shù)中,最小值等于2的函數(shù)是( )
A.y=x+
B.y=cosx+ (0<x< )
C.y=
D.y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某幾何體的三視圖都是直角三角形,則該幾何體的體積等于__________.
【答案】10
【解析】幾何體為三棱錐,(高為4,底面為直角三角形),體積為
點(diǎn)睛:空間幾何體體積問題的常見類型及解題策略
(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進(jìn)行求解.
(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補(bǔ)形法等方法進(jìn)行求解.
(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.
【題型】填空題
【結(jié)束】
15
【題目】如圖:在三棱錐中,已知底面是以為斜邊的等腰直角三角形,且側(cè)棱長,則三棱錐的外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* .
(1)證明:數(shù)列{ }是等差數(shù)列;
(2)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的奇函數(shù),當(dāng)時(shí),.其中且.
(1)求的解析式;
(2)解關(guān)于的不等式,結(jié)果用集合或區(qū)間表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義非零向量的“相伴函數(shù)”為(),向量稱為函數(shù)的“相伴向量”(其中為坐標(biāo)原點(diǎn)),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為.
(1)已知(),求證:,并求函數(shù)的“相伴向量”模的取值范圍;
(2)已知點(diǎn)()滿足,向量的 “相伴函數(shù)”在處取得最大值,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com