【題目】在三棱錐中,是正三角形,面,,、分別是的中點(diǎn).

1)證明:

2)求二面角的余弦值.

【答案】1)見解析;(2.

【解析】

1)取的中點(diǎn),連接、,由等腰三角形三線合一的性質(zhì)得出,利用直線與平面垂直的判定定理可證明出,從而得出;

2)利用面面垂直的性質(zhì)定理證明出平面,以為坐標(biāo)原點(diǎn),分別以、所在直線為軸、軸、軸建立空間直角坐標(biāo)系,然后利用空間向量法計(jì)算出二面角的余弦值.

1)取的中點(diǎn),連接、,

,,又,;

2)由面,平面平面,平面,可得.

故以為坐標(biāo)原點(diǎn),分別以、所在直線為軸、軸、軸,

建立如圖所示空間直角坐標(biāo)系:則,, ,.

,,設(shè)為平面EFC的一個(gè)法向量

,取,則 .

為面的一個(gè)法向量,由

如圖知二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為有效促進(jìn)我市體育產(chǎn)業(yè)和旅游產(chǎn)業(yè)有機(jī)融合,提高我市的知名度,更好地宣傳萍鄉(xiāng)武功山,并通過賽事向社會(huì)各界傳播健康、低碳、綠色、環(huán)保的運(yùn)動(dòng)理念。在今年9月21日第九屆環(huán)鄱陽湖國際自行車大賽第九站比賽在我市武功山舉行。在這次89.5公里的自行車個(gè)人賽中,其中25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:

(1)現(xiàn)將參賽選手按成績由好到差編為1~25號,再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績?yōu)?45分鐘,若甲被選取,求被選取的其余4名選手的成績的平均數(shù);

(2)若從總體中選取一個(gè)樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績)選取一個(gè)具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C=1ab0)的離心率為,其內(nèi)接正方形的面積為4

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)M為橢圓C的右頂點(diǎn),過點(diǎn)且斜率不為0的直線l與橢圓C相交于P,Q兩點(diǎn),記直線PM,QM的斜率分別為k1k2,求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱中,的中點(diǎn),點(diǎn)在側(cè)棱上,平面.

(1)證明:的中點(diǎn);

(2)設(shè),四邊形為正方形,四邊形為矩形,且異面直線所成的角為30°,求兩面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),把曲線橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的一半,得到曲線,直線的普通方程是,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系;

(1)求直線的極坐標(biāo)方程和曲線的普通方程;

(2)記射線交于點(diǎn),與交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓上的兩點(diǎn).

1)求橢圓的離心率;

2)已知直線過點(diǎn),且與橢圓交于另一點(diǎn)(不同于點(diǎn)),若以為直徑的圓經(jīng)過點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市開展年終大回饋,設(shè)計(jì)了兩種答題游戲方案:

方案一:顧客先回答一道多選題,從第二道開始都回答單選題;

方案二:顧客全部選擇單選題進(jìn)行回答;

其中每道單選題答對得2分,每道多選題答對得3分,無論單選題還是多選題答錯(cuò)都得0分,每名參與的顧客至多答題3道.在答題過程中得到3分或3分以上立刻停止答題,并獲得超市回饋的贈(zèng)品.

為了調(diào)查顧客對方案的選擇情況,研究人員調(diào)查了參與游戲的500名顧客,所得結(jié)果如下表所示:

14

0

1

2

3

5

6

6

6

6

8

9

15

0

2

3

4

5

5

5

7

9

16

0

0

5

6

7

男性

女性

選擇方案一

150

80

選擇方案二

150

120

(1)是否有95%的把握認(rèn)為方案的選擇與性別有關(guān)?

(2)小明回答每道單選題的正確率為0.8,多選題的正確率為0.75,.

①若小明選擇方案一,記小明的得分為,求的分布列及期望;

②如果你是小明,你覺得選擇哪種方案更有可能獲得贈(zèng)品,請通過計(jì)算說明理由.

附:,

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為,實(shí)軸長為4,漸近線方程為,點(diǎn)N在圓上,則的最小值為( )

A. B. 5C. 6D. 7

查看答案和解析>>

同步練習(xí)冊答案