分析 (1)由已知求出Sn-1=(n-1)an-1-(n-1)(n-2),兩式相減得an=an-1+2,則數(shù)列{an}的通項公式an可求;
(2)由an=2n,代入bn=$\frac{1}{(n+1){a}_{n}}$,得到bn=$\frac{1}{2n(n+1)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,進(jìn)一步可求出Tn.
解答 解:(1)n≥2時,Sn=nan-n(n-1),
∴Sn-1=(n-1)an-1-(n-1)(n-2).
兩式相減得an=nan-(n-1)an-1-2(n-1),則(n-1)an=(n-1)an-1+2(n-1),
∴an=an-1+2.
∴{an}是首項為2,公差為2的等差數(shù)列.
∴an=2n;
(2)由(1)知an=2n,
∴bn=$\frac{1}{(n+1){a}_{n}}$=$\frac{1}{2n(n+1)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.
∴Tn=$\frac{1}{2}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})$=$\frac{1}{2}(1-\frac{1}{n+1})=\frac{n}{2n+2}$.
點評 本題考查了數(shù)列的通項公式以及數(shù)列的前n項和,考查了數(shù)列遞推式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=4 | B. | $\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2 | ||
C. | $\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=6 | D. | $\sqrt{{x}^{2}{+y}^{2}-4x+4}$-$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6$\sqrt{6}$ | B. | 9 | C. | 10 | D. | 4$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | 4 | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com