已知實數(shù)x,y滿足約束條件
x+y≤1
x-y≥-1
2x-y≤2
,則目標函數(shù)z=3x+y的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用z的幾何意義,利用數(shù)形結合,即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
由z=3x+y得y=-3x+z,
平移直線y=-3x+z,由圖象可知當直線y=-3x+z,經過點C時,
直線的截距最大,此時z最大.
x-y=-1
2x-y=2
,解得
x=3
y=4

即C(3,4),此時zmax=3×3+4=13,
故答案為:13.
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

雙曲線C:
x2
4
-y2=1的離心率是
 
;漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(4,4,0),B(3,a,a-2),且|AB|=
3

(1)若點C的坐標為(2,2,2),求證:A,B,C三點共線.
(2)若點D的坐標為(5,4,1),試判斷△ABD的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M(x,y)的坐標滿足
x-y+5≥0
x+y≥0
x≤3
,N(1,-3),O為坐標原點,則
ON
OM
的最小值是( 。
A、-21B、12C、-6D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知M(-a,0),N(a,0),其中a∈R,若直線l上有且只有一點P,使得|PM|+|PN|=10,則稱直線l為“黃金直線”,點P為“黃金點”.由此定義可判斷以下說法中正確的是
 

①當a=7時,坐標平面內不存在黃金直線;
②當a=5時,坐標平面內有無數(shù)條黃金直線;
③當a=3時,黃金點的軌跡是個橢圓;
④當a=0時,坐標平面內有且只有1條黃金直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的個數(shù)是( 。
①命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1”:
②若命題 p:?x0∈R,x02-x0+1≤0,則?p:?x∈R,x2-x+1>0;
③△ABC中,sinA>sinB是A>B的充要條件;
④“不等邊三角形的三個內角相等”逆命題為真命題.
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(ax-bx)+2x中,常數(shù)a、b滿足a>1>b>0,且a=b+1,那么f(x)>2的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前Sn項和為Sn,a1=3,{bn}為等比數(shù)列,且b1=1,bn>0,b2+S2=10,S5=5b3+3a2,n∈N*,求數(shù)列{an},{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)是偶函數(shù)的是( 。
A、y=sinx
B、y=cosx
C、y=tanx
D、y=cos(x+
π
2

查看答案和解析>>

同步練習冊答案