1.一個(gè)底面為正方形的四棱錐,其三視圖如圖所示,若這個(gè)四棱錐的體積為2,則此四棱錐最長(zhǎng)的側(cè)棱長(zhǎng)為( 。
A.2$\sqrt{3}$B.$\sqrt{11}$C.$\sqrt{13}$D.$\sqrt{10}$

分析 由三視圖可知:該幾何體為四棱錐,底面是邊長(zhǎng)為$\sqrt{2}$的正方形,高為h.利用體積計(jì)算公式、勾股定理即可得出.

解答 解:由三視圖可知:該幾何體為四棱錐,底面是邊長(zhǎng)為$\sqrt{2}$的正方形,高為h.
則$\frac{1}{3}×(\sqrt{2})^{2}$×h=2,解得h=3
∴此四棱錐最長(zhǎng)的側(cè)棱長(zhǎng)PC=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$.
故選:C.

點(diǎn)評(píng) 本題考查了三視圖的有關(guān)知識(shí)、四棱錐的體積計(jì)算公式、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,三棱錐V-ABC中,VA=VB=AC=BC=2,AB=2$\sqrt{3}$,VC=1則二面角V-AB-C的平面角的度數(shù)為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.增廣矩陣$(\begin{array}{l}{1}&{4}&{-3}&{3}\\{3}&{0}&{9}&{4}\\{2}&{1}&{-2}&{5}\end{array})$對(duì)應(yīng)方程組的系數(shù)行列式中,元素3的代數(shù)余子式的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個(gè)幾何體的三視圖如圖所示,其中正視圖是正三角形,則該幾何體的體積為( 。
A.$8\sqrt{3}$B.8C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=lnx-\frac{1}{x}$的零點(diǎn)為x0,則下列結(jié)論正確的是( 。
A.$ln{x_0}>{x_0}^{\frac{1}{2}}>{2^{x_0}}$B.${2^{x_0}}>ln{x_0}>{x_0}^{\frac{1}{2}}$
C.${2^{x_0}}>{x_0}^{\frac{1}{2}}>ln{x_0}$D.${x_0}^{\frac{1}{2}}>{2^{x_0}}>ln{x_0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=1-x+lnx
(Ⅰ)求f(x)的最大值;
(Ⅱ)對(duì)任意的x1,x2∈(0,+∞)且x2<x1是否存在實(shí)數(shù)m,使得$mx_2^2$-$mx_1^2$-x1lnx1+x2lnx2>0恒成立;若存在,求出m的取值范圍;若不存在,說明理由:
(Ⅲ)若正數(shù)數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}$=$\frac{(1+{a}_{n}){a}_{n}}{2{a}_{n}^{2}}$,且a1=$\frac{1}{2}$,數(shù)列{an}的前n項(xiàng)和為Sn,試比較2${e^{S_n}}$與2n+1的大小并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AB是圓O的直徑,弦BD、CA的延長(zhǎng)線相交于點(diǎn)M,MN垂直BA的延長(zhǎng)線于點(diǎn)N.
(1)求證:DA是∠CDN的角平分線;
(2)求證:BM2=AB2+AM2+2AB•AN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(1,0),離心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)M(2,0)作直線與橢圓C相交于兩點(diǎn)G,H,設(shè)P為橢圓C上動(dòng)點(diǎn),且滿足$\overrightarrow{OG}$+$\overrightarrow{OH}$=t$\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)).當(dāng)t≥1時(shí),求△OGH面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=$\frac{1}{2}$x2-alnx在(1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案