函數(shù)y=ax-2(a>0,且a≠1)的圖象必經(jīng)過點(diǎn)
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)函數(shù)y=ax過定點(diǎn)(0,1)的性質(zhì),即可推導(dǎo)函數(shù)y=ax-2(0<a≠1)的圖象過定點(diǎn)(2,1).
解答: 解:∵指數(shù)函數(shù)y=ax過定點(diǎn)(0,1),
∴將y=ax向右平移2個(gè)單位,得到y(tǒng)=ax-2,
則函數(shù)y=ax-2(0<a≠1)的圖象過定點(diǎn)(2,1).
故答案為:(2,1)
點(diǎn)評:本題主要考查指數(shù)函數(shù)的圖形和性質(zhì),考查指數(shù)函數(shù)過定點(diǎn)的性質(zhì),利用函數(shù)圖象之間的關(guān)系進(jìn)行求解即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若對于任意的a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”,已知函數(shù)f(x)=
ex+t
ex+1
是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)棱長為1的正方體為圖形C1,以C1各個(gè)面的中心為頂點(diǎn)的正八面體為圖形C2,以C2各個(gè)面的中心為頂點(diǎn)的正方體為圖形C3,以C3各個(gè)面的中心為頂點(diǎn)的正八面體為圖形C4,…,以此類推.設(shè)正多面體Cn(n∈N+)的棱長為an(各棱長相等的多面體稱為正多面體),則:
(1)a1=1,a2=
 
;
(2)當(dāng)n為奇數(shù)時(shí),an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,若sinA:sinB:sinC=3:5:7,則其較小兩內(nèi)角之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,
AD
=
DE
,AB=10,BD=8,則DE=
 
;DC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+2ex-3e2lnx-b(e是自然對數(shù)的底數(shù))在(x0,0)處的切線斜率為0,則b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系下,點(diǎn)A(x2+4,4-y,1+2z)關(guān)于y軸的對稱點(diǎn)是B(-4x,9,7-z),則x,y,z的值依次是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}是公比為q的等比數(shù)列且|q|>1,{an+1}有連續(xù)四項(xiàng)在{-53,-23,19,37,82}中,則q的值可以為( 。
A、
4
3
B、
3
2
C、-
4
3
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax是R上的減函數(shù),則函數(shù)y=loga(6+5x-x2)的單調(diào)增區(qū)間為( 。
A、(-∞,-1)
B、(-1,
5
2
C、(
5
2
,6)
D、(
5
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案