雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別是F1、F2,過F1作傾斜角為30°的直線交雙曲線右支于M點,若MF2⊥x軸,則雙曲線的離心率為(  )
A、
6
B、
3
C、
4
D、
3
3
分析:將x=c代入雙曲線方程求出點M的坐標(biāo),通過解直角三角形列出三參數(shù)a,b,c的關(guān)系,求出離心率的值.
解答:解:將x=c代入雙曲線的方程得y=
b2
a
,即M(c,
b2
a

在△MF1F2中tan30°=
b2
a
2c

c2-a2
2ac
=
3
3
,解得e=
c
a
=
3

故選:B.
點評:本題考查雙曲線中三參數(shù)的關(guān)系:c2=a2+b2,注意與橢圓中三參數(shù)關(guān)系的區(qū)別;求圓錐曲線的離心率就是求三參數(shù)的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)
的中心和左焦點,點P為雙曲線右支上的任意一點,則
OP
FP
的取值范圍為( 。
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)
的一條準(zhǔn)線方程為x=
3
2
,則a等于
 
,該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C的圓心為雙曲線
x2
a2
-y2=1(a>0)
的左焦點,且與此雙曲線的漸近線相切,若圓C被直線l:x-y+2=0截得的弦長等于
2
,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)的中心和左焦點,點P為雙曲線右支上的一點,并且P點與右焦點F′的連線垂直x軸,則線段OP的長為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1
的一個焦點坐標(biāo)為(-
3
,0)
,則其漸近線方程為( 。
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步練習(xí)冊答案