10.1和5的等差中項是( 。
A.$\sqrt{5}$B.$±\sqrt{5}$C.3D.±3

分析 由a,b,c成等差數(shù)列,可得2b=a+c,計算即可得到所求值.

解答 解:1和5的等差中項為$\frac{1+5}{2}$=3,
故選:C.

點(diǎn)評 本題考查等差數(shù)列中項的定義和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知二項式(x2-$\frac{1}{x}$)n的展開式的二項式系數(shù)之和為32,則展開式中含x項的系數(shù)是-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.從混有3張假鈔的10張百元鈔票中任意抽出2張,將其中1張放到驗鈔機(jī)上檢驗發(fā)現(xiàn)是假鈔,則另一張也是假鈔的概率為( 。
A.$\frac{1}{8}$B.$\frac{2}{9}$C.$\frac{1}{15}$D.$\frac{3}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.連續(xù)擲一枚質(zhì)地均勻的骰子4次,設(shè)事件A=“恰有2次正面朝上的點(diǎn)數(shù)為3的倍數(shù)”,則P(A)=$\frac{8}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a≥b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,過點(diǎn)O且斜率為$\frac{1}{6}$的直線與直線AB相交M,且$\overrightarrow{MA}=\frac{1}{3}\overrightarrow{BM}$.
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x-2)2+(y-1)2=5的一條直徑,若橢圓E經(jīng)過P,Q兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=(x2-3)ex,現(xiàn)給出下列結(jié)論:
①f(x)有極小值,但無最小值②f(x)有極大值,但無最大值
③若方程f(x)=b恰有一個實數(shù)根,則b>6e-3
④若方程f(x)=b恰有三個不同實數(shù)根,則0<b<6e-3
其中所有正確結(jié)論的序號為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知曲線f(x)=lnx在點(diǎn)(2,f(2))處的切線與直線ax+y+1=0垂直,則實數(shù)a的值為(  )
A.$\frac{1}{2}$B.-2C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,點(diǎn)E是棱PA的中點(diǎn),PB=PD,平面BDE⊥平面ABCD.
(Ⅰ)求證:PC∥平面BDE;
(Ⅱ)求證:PC⊥平面ABCD;
(Ⅲ) 設(shè)PC=λAB,試判斷平面PAD⊥平面PAB能否成立;若成立,寫出λ的一個值(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)f(x)=2cos(2x-$\frac{π}{6}}$)的圖象向左平移$\frac{π}{4}$個單位得到g(x)的圖象,記函數(shù)g(x)在區(qū)間$[{t,t+\frac{π}{4}}]$內(nèi)的最大值為Mt,最小值為mt,記ht=Mt-mt,若t∈[${\frac{π}{4}$,$\frac{π}{2}}$],則函數(shù)h(t)的最小值為1.

查看答案和解析>>

同步練習(xí)冊答案