(本小題滿分14分)已知橢圓C:,其相應(yīng)于焦點的準線方程為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知過點傾斜角為的直線分別交橢圓C于A、B兩點,
求證:;
(Ⅲ)過點作兩條互相垂直的直線分別交橢圓C于A、B和D、E,
求的最小值。
本題主要考查直線的方程、橢圓的方程和性質(zhì)、直線與橢圓的位置關(guān)系等知識?疾閿(shù)形結(jié)合的數(shù)學思想以及運算能力和綜合解題能力。
解:(Ⅰ)由題意得:,∴,∴橢圓C的方程為。
(Ⅱ)方法一:由(Ⅰ)知,是橢圓C的左焦點,離心率,
設(shè)是橢圓的左準線,則:
作于,于,于軸交于點H(如圖),
∵點A在橢圓上,
∴==
∴,同理
∴。
方法二:當時,記。則AB:
將其代入方程得
設(shè),則是此二次方程的兩個根。
∴,
①
∵,代入①式得。 ②
當時,仍滿足②式。
∴。
(Ⅲ)設(shè)直線AB傾斜角為,由于DE⊥AB,由(Ⅱ)可得
,
當或時,取得最小值。
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com