(本小題滿分14分)
已知橢圓C1: (a>b>0)的離心率為,直線:+2=0與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切。
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F 1,右焦點F2,直線過點F1且垂直于橢圓的長軸,動直線垂直直線于點P,線段PF2的垂直平分線交于點M,求點M的軌跡C2的方程;
(3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的點,且AB⊥ BC,求Yo的取值范圍。
解:(1)所以,,所以,2a2=3b2,.......2分,
直線l:x一y+2=0與圓直線l:x一y+2=0與x2+y2=b2相切,
所以,=b,所以,b=,b2=2.....................3分,
a2=2,所以,橢圓C1的方程是.....................4分,
(2)因為|MP|=|MF2|,
所以,動點M到定直線:x=-1的距離等于它到定點F2(1,0)的距離
所以,動點M的軌跡是以為準線,F(xiàn)2為焦點的拋物線,
=1,所以點M的軌跡C2的方程為y2=4x.....................8分。
(3)由(1)知A(1,2),
又AB⊥ BC,所以,=0,
整理,得:y22+(y0+2)y2+16+2y0=0,.............12分
此方程有解,
所以∆=(y0+2)2-4(16+2y0)≥0,解得:y0≤-6或y0≥10,
當(dāng)y0=-6時,B(4,2),C(9,-6),故符合條件,
當(dāng)y0=10時,B(9,-6),C(25,10),故符合條件,
所以,點C的縱坐標(biāo)y0的取值范圍是(-,-6)∪[10,+).............14分。
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com