下列四個(gè)幾何體中,每個(gè)幾何體的三視圖中有且僅有兩個(gè)視圖相同的是( )
A.①② B.①③ C.③④ D.②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-1分類加法與分步乘法計(jì)數(shù)原理(解析版) 題型:填空題
如果把個(gè)位數(shù)是1,且恰有3個(gè)數(shù)字相同的四位數(shù)叫作“好數(shù)”,那么在由1,2,3,4四個(gè)數(shù)字組成的有重復(fù)數(shù)字的四位數(shù)中,“好數(shù)”共有________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪考前特訓(xùn):創(chuàng)新問(wèn)題專項(xiàng)訓(xùn)練1(解析版) 題型:填空題
已知兩個(gè)非零向量a與b,定義|a×b|=|a|·|b|sin θ,其中θ為a與b的夾角.若a=(-3,4),b=(0,2),則|a×b|的值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:選擇題
一個(gè)幾何體的三視圖如圖所示,且其側(cè)視圖是一個(gè)等邊三角形,則這個(gè)幾何體的體積為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:選擇題
已知某幾何體的三視圖如圖所示,其中正(主)視圖中半圓的半徑為1,則該幾何體的體積為( )
A.24- B.24-
C.24-π D.24-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):6-3二元一次不等式及簡(jiǎn)單的線性規(guī)劃(解析版) 題型:解答題
已知x,y滿足約束條件
(1)求目標(biāo)函數(shù)z=2x-y的最大值和最小值;
(2)若目標(biāo)函數(shù)z=ax+y取得最大值的最優(yōu)解有無(wú)窮多個(gè),求a的值;
(3)求z=x2+y2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):6-3二元一次不等式及簡(jiǎn)單的線性規(guī)劃(解析版) 題型:選擇題
已知變量x,y滿足的不等式組表示的是一個(gè)直角三角形圍成的平面區(qū)域,則實(shí)數(shù)k=( )
A.- B. C.0 D.-或0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):3-2同角三角函數(shù)基本關(guān)系式與誘導(dǎo)公式(解析版) 題型:選擇題
已知2sinαtanα=3,則cosα的值是( )
A.-7 B.- C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)一輪配套特訓(xùn):1-2命題及其關(guān)系、充分條件與必要條件(解析版) 題型:填空題
已知命題p:實(shí)數(shù)m滿足m2+12a2<7am(a>0),命題q:實(shí)數(shù)m滿足方程+=1表示的焦點(diǎn)在y軸上的橢圓,且p是q的充分不必要條件,a的取值范圍為_(kāi)_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com