2.如圖所示的流程圖中,輸出S的值是$\frac{2}{3}$

分析 運(yùn)行流程圖,寫出每次i<1026成立時(shí)S,k的值,當(dāng)k=2016,k<1026不成立,退出循環(huán),輸出S的值為$\frac{2}{3}$.

解答 解:運(yùn)行如圖所示的流程圖,有
S=3,k=1,
k<1026成立,S=$-\frac{1}{2}$,k=2
k<1026成立,S=$\frac{2}{3}$,k=3
k<1026成立,S=3,k=4

觀察規(guī)律可得S的取值周期為3,由于2016=672×3,
所以:k<1026成立,S=$\frac{2}{3}$,k=2016
k<1026不成立,退出循環(huán),輸出S的值為$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點(diǎn)評 本題主要考察循環(huán)結(jié)構(gòu)的程序框圖和算法,正確寫出每次循環(huán)得到的S,k的值,觀察規(guī)律得S的取值周期為3是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=sin(x-$\frac{π}{3}$)sinx的最大值1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定點(diǎn)M(0,-1),動(dòng)點(diǎn)P在曲線y=2x2+1上運(yùn)動(dòng),求線段MP的中點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.拋物線y2=2px(p>0)的準(zhǔn)線恰好是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的一條準(zhǔn)線,則該拋物線的焦點(diǎn)坐標(biāo)是($\frac{4}{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面是邊長為2$\sqrt{3}$菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2$\sqrt{6}$,M,N分別為PB,PD的中點(diǎn)
(1)證明:MN∥平面ABCD;
(2)證明:BD⊥平面PAC;
(3)求三棱錐C-BDN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面為矩形,PA⊥底面ABCD,且PA=AD,M為AB的中點(diǎn).
(1)在側(cè)棱PC上是否存在一點(diǎn)N,使MN∥平面PAD?證明你的結(jié)論;
(2)求證:平面PMC⊥平面PCD;
(3)當(dāng)$\frac{AB}{AD}$取何值,平面PAD與平面PMC所成的銳二面角為45°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的焦點(diǎn)到其漸近線的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.由圓x2+y2=9外一點(diǎn)P(5,12)引圓的割線交圓于A、B兩點(diǎn),求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{-{2}^{x}(x=0)}\\{{x}^{2}-1(x<0)}\end{array}\right.$,則f{f[f($\frac{1}{3}$)]}=( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案