2.用C(A)表示非空集合A中的元素個(gè)數(shù),定義A*B=$\left\{\begin{array}{l}C(A)-C(B),當(dāng)C(A)≥C(B)\\ C(B)-C(A),當(dāng)C(A)<C(B)\end{array}$,若A={x|x2-ax-2=0,a∈R},B={x||x2+bx+2|=2,b∈R},且A*B=2,則b的取值范圍( 。
A.b≥2$\sqrt{2}$或b≤-2$\sqrt{2}$B.b>2$\sqrt{2}$或b<-2$\sqrt{2}$C.b≥4或b≤-4D.b>4或b<-4

分析 由題意,可確定C(A)=2,可得C(B)=0或C(B)=4然后解方程|x2+bx+2|=2,討論b的范圍即可.

解答 解:∵A*B=2,C(A)=2
∴C(B)=0或4;
∴|x2+bx+2|=2,
當(dāng)b=0時(shí),方程只有1解,
故b≠0,∴x2+bx+2=2有2個(gè)解
故x2+bx+2=-2即x2+bx+4=0不同的解,
∴△=b2-4×4>0,
∴b>4或b<-4.
故選D.

點(diǎn)評 本題主要考查集合元素個(gè)數(shù)的判斷,利用新定義,將集合元素個(gè)數(shù)轉(zhuǎn)化為對應(yīng)方程根的個(gè)數(shù),是解決本題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.同時(shí)拋擲2枚均勻硬幣100次,設(shè)兩枚硬幣都出現(xiàn)正面的次數(shù)為Y,則E(Y)=25,D(Y)=$\frac{75}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a、b、c依次是△ABC的角A、B、C所對的邊,若$\frac{sinA•sinB}{sinC}$=$\frac{sinC}{cosC}$,且a2+b2=mc2,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)已知tanα=3,求$\frac{sinα-2cosα}{sinα+cosα}$的值;
(2)已知α為第二象限角,化簡cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若復(fù)數(shù)z滿足$\frac{z}{2+i}$=i2015+i2016(i為虛數(shù)單位),則|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.從參加乒乓球團(tuán)體比賽的6名運(yùn)動員中選出4名,并按排定的順序出場比賽,有多少種不同的方法?( 。
A.360種B.240種C.180種D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,2),若$\overrightarrow a$∥$\overrightarrow b$,則$\overrightarrow a$+$\overrightarrow b$等于( 。
A.(3,3)B.(6,3)C.(1,3)D.(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.三角形ABC的三內(nèi)角A,B,C所對邊的長分別為a,b,c設(shè)向量$\overrightarrow p$=(a+c,b),$\overrightarrow q$=(b-a,c-a),若$\overrightarrow p$∥$\overrightarrow{q}$,角A=$\frac{π}{6}$,則角B的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an},{bn}滿足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{b_n}{1-a_n^2}$(n∈N*),則b2017=$\frac{2017}{2018}$.

查看答案和解析>>

同步練習(xí)冊答案