分析 (1)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,
(2)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]上,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的取值最大和最小值.
解答 解:(1)由函數(shù)f(x)=(sinx+cosx)2+cos2x-1.
化簡(jiǎn)可得:f(x)=2sinxcosx+cos2x
=sin2x+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}=π$,
(2)由(1)可知,f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$]上,
∴2x+$\frac{π}{4}$∈[$-\frac{3π}{4},\frac{π}{4}$],
∴sin(2x+$\frac{π}{4}$)∈[-1,$\frac{\sqrt{2}}{2}$].
故得函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值分別為1,$-\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 充分而不必要條件 | ||
C. | 必要而不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{16}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{8}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com