18.設(shè){an}是首項大于零的等比數(shù)列,則“a1<a2”是“數(shù)列{an}是遞增數(shù)列”的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

分析 由已知中{an}是首項大于零的等比數(shù)列,結(jié)合充要條件的定義,可得答案.

解答 解:∵{an}是首項大于零的等比數(shù)列,
則“a1<a2”?“q>1“?“數(shù)列{an}是遞增數(shù)列”,
即“a1<a2”是“數(shù)列{an}是遞增數(shù)列”的充要條件,
故選:A

點評 本題考查的知識點是充要條件,正確理解充要條件的概念是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)x,y滿足|x|≤y+1,且-1≤y≤1,則z=2x+y的最大值( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)當(dāng)x=θ時,函數(shù)y=3sinx-cosx取得最大值,則sinθ=( 。
A.$-\frac{{\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$-\frac{{3\sqrt{10}}}{10}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=e2x+ax,若當(dāng)x∈(0,+∞)時,總有f(x)>1,則實數(shù)a的取值范圍為[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C1的極坐標(biāo)方程為ρ2-4ρcosθ-4=0,曲線C2和曲線C1關(guān)于直線θ=$\frac{π}{4}$對稱,求曲線C2的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(sinx+cosx)2+cos2x-1.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x,y∈(0,+∞),x2+y2=x+y.
(1)求$\frac{1}{x}+\frac{1}{y}$的最小值;
(2)是否存在x,y,滿足(x+1)(y+1)=5?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{x^2}{5}+\frac{y^2}{4}=1$,過右焦點F2的直線l交橢圓于M,N兩點.
(1)若$\overrightarrow{OM}•\overrightarrow{ON}=-3$,求直線l的方程;
(2)若直線l的斜率存在,在線段OF2上是否存在點P(a,0),使得$|\overrightarrow{PM}|=|\overrightarrow{PN}|$,若存在,求出a的范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.焦點為(0,6),且與雙曲線$\frac{{x}^{2}}{2}$-y2=1有相同的漸近線的雙曲線方程是( 。
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1B.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1C.$\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1D.$\frac{{x}^{2}}{24}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

同步練習(xí)冊答案