精英家教網 > 高中數學 > 題目詳情

【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長度大于1米,且AC比AB長0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為( 。

A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米

【答案】D
【解析】解:設BC的長度為x米,AC的長度為y米,則AB的長度為(y﹣0.5)米,在△ABC中,依余弦定理得:AB2=AC2+BC2﹣2ACBCcos∠ACB,

即(y﹣0.5)2=y2+x2﹣2yx× ,化簡,得y(x﹣1)=x2 ,

∵x>1,

∴x﹣1>0,

因此y=

y=(x﹣1)+ +2≥ +2,

當且僅當x﹣1= 時,取“=”號,

即x=1+ 時,y有最小值2+

故答案為:D.

先根據余弦定理求得BC的長度為x與AC的長度為y的關系式,再結合x的取值范圍及基本不等式求得y的最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數f(x)在[0,π]上的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a2=1,|an+1﹣an|= ,若a2n+1>a2n﹣1 , a2n+2<a2n(n∈N+)則數列{(﹣1)nan}的前40項的和為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的是( 。
A.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,x2+x+1>0”
B.命題“若x2﹣3x+2=0,則x=1或x=2”的否命題是:“若x2﹣3x+2=0,則x≠1或x≠2”
C.直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是
D.命題“若x=y,則sinx=siny”的逆否命題是真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】來自某校一班和二班的共計9名學生志愿服務者被隨機平均分配到運送礦泉水、清掃衛(wèi)生、維持秩序這三個崗位服務,且運送礦泉水崗位至少有一名一班志愿者的概率是
(1)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(2)設隨機變量X為在維持秩序崗位服務的一班的志愿者的人數,求X分布列及期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊只比賽一場),共有高一、高二、高三三個隊參賽,高一勝高二的概率為 ,高一勝高三的概率為 ,高二勝高三的概率為P,每場勝負獨立,勝者記1分,負者記0分,規(guī)定:積分相同者高年級獲勝.
(Ⅰ)若高三獲得冠軍概率為 ,求P.
(Ⅱ)記高三的得分為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥CD,CD⊥AC,過CD的平面分別與PA,PB交于點E,F(xiàn).

(1)求證:CD⊥平面PAC;
(2)求證:AB∥EF.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx+ax2(a∈R),y=f(x)的圖象連續(xù)不間斷.
(1)求函數y=f(x)的單調區(qū)間;
(2)當a=1時,設l是曲線y=f(x)的一條切線,切點是A,且l在點A處穿過函數y=f(x)的圖象(即動點在點A附近沿曲線y=f(x)運動,經過點A時,從l的一側進入另一側),求切線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,圓C1:x2+y2=1經過伸縮變換 后得到曲線C2以坐標原點為極點,x軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線l的極坐標方程為cosθ+2sinθ=
(1)求曲線C2的直角坐標方程及直線l的直角坐標方程;
(2)在C2上求一點M,使點M到直線l的距離最小,并求出最小距離.

查看答案和解析>>

同步練習冊答案