已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(Ⅰ)當(dāng)a>1時(shí),求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(Ⅱ)若函數(shù)y=|f(x)-t|-1有三個(gè)零點(diǎn),求t的值;
(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.
【答案】分析:(Ⅰ)證明a>1時(shí)函數(shù)的導(dǎo)數(shù)大于0.
(Ⅱ)先判斷函數(shù)f(x)的極小值,再由y=|f(x)-t|-1有三個(gè)零點(diǎn),所以方程f(x)=t±1有三個(gè)根,根據(jù)t-1應(yīng)是f(x)的極小值,解出t.
(Ⅲ)f(x)的最大值減去f(x)的最小值大于或等于e-1,由單調(diào)性知,f(x)的最大值是f(1)
或f(-1),最小值f(0)=1,由f(1)-f(-1)的單調(diào)性,判斷f(1)與f(-1)的大小關(guān)系,再由
f(x)的最大值減去最小值f(0)大于或等于e-1求出a的取值范圍.
解答:解:(Ⅰ)f′(x)=axlna+2x-lna=2x+(ax-1)lna  (3分)
由于a>1,故當(dāng)x∈(0,+∞)時(shí),lna>0,ax-1>0,所以f′(x)>0,
故函數(shù)f(x)在(0,+∞)上單調(diào)遞增  (5分)
(Ⅱ)當(dāng)a>0,a≠1時(shí),因?yàn)閒′(0)=0,且f(x)在(0,+∞)上單調(diào)遞增,
故f′(x)=0有唯一解x=0(7分)
所以x,f′(x),f(x)的變化情況如下表所示:

又函數(shù)y=|f(x)-t|-1有三個(gè)零點(diǎn),所以方程f(x)=t±1有三個(gè)根,
而t+1>t-1,所以t-1=(f(x))min=f(0)=1,解得t=2;(11分)
(Ⅲ)因?yàn)榇嬖趚1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
所以當(dāng)x∈[-1,1]時(shí),|(f(x))max-(f(x))min|
=(f(x))max-(f(x))min≥e-1,(12分)
由(Ⅱ)知,f(x)在[-1,0]上遞減,在[0,1]上遞增,
所以當(dāng)x∈[-1,1]時(shí),(f(x))min=f(0)=1,
(f(x))max=max{f(-1),f(1)},
,
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023213917443970946/SYS201310232139174439709019_DA/2.png">(當(dāng)t=1時(shí)取等號(hào)),
所以在t∈(0,+∞)上單調(diào)遞增,而g(1)=0,
所以當(dāng)t>1時(shí),g(t)>0;當(dāng)0<t<1時(shí),g(t)<0,
也就是當(dāng)a>1時(shí),f(1)>f(-1);
當(dāng)0<a<1時(shí),f(1)<f(-1)(14分)
①當(dāng)a>1時(shí),由f(1)-f(0)≥e-1⇒a-lna≥e-1⇒a≥e,
②當(dāng)0<a<1時(shí),由,
綜上知,所求a的取值范圍為.(16分)
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn),用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)極值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案