11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,(x≤-1)}\\{{x}^{2},(-1<x<2)}\\{2x,(x≥2)}\end{array}\right.$.
(Ⅰ)求f(-3),f(4),f(f(-2))的值;
(Ⅱ)若f(m)=8,求m的值.

分析 (Ⅰ)根據(jù)分段函數(shù),代值計(jì)算即可;
(Ⅱ)根據(jù)分段函數(shù)的特點(diǎn)以及f(4)=8,即可求出m的值.

解答 解:(Ⅰ)f(-3)=-3+2=-1,f(4)=2×4=8,f(-2)=-2+2=0,f(0)=0,
(Ⅱ)由f(4)=8,
∵f(m)=8,
∴m=4,

點(diǎn)評(píng) 本題考查了分段函數(shù)的問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=5${\;}^{\frac{1}{x-1}}$+$\sqrt{2-x}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|1<x≤2}B.{x|1≤x≤2}C.{x|x≤2且x≠1}D.{x|x≥0且x≠1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.學(xué)校對(duì)高中三個(gè)年級(jí)的學(xué)生進(jìn)行調(diào)查,其中高一有100名學(xué)生,高二有200名學(xué)生,高三有300名學(xué)生,現(xiàn)學(xué)生處欲用分層抽樣的方法抽取30名學(xué)生進(jìn)行問(wèn)卷調(diào)查,則下列判斷正確的是( 。
A.高一學(xué)生被抽到的概率最大B.高三學(xué)生被抽到的概率最大
C.高三學(xué)生被抽到的概率最小D.每名學(xué)生被抽到的概率相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某校高中生共有1000人,其中高一年級(jí)500人,高二年級(jí)300人,高三年級(jí)200人,現(xiàn)采用分層抽樣法抽取一個(gè)容量為100的樣本,那么從高一、高二、高三各年級(jí)抽取人數(shù)分別為50,30,20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列給出四組函數(shù),表示同一函數(shù)的是( 。
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=2x+1,g(x)=2x-1
C.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若定義x⊕y=3x-y,則a⊕(a⊕a)等于( 。
A.-aB.3aC.aD.-3a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長(zhǎng)度均為d=b-a,多個(gè)區(qū)間并集的長(zhǎng)度為各區(qū)間長(zhǎng)度之和,例如,(1,2)∪[3,5)的長(zhǎng)度d=(2-1)+(5-3)=3.用[x]表示不超過(guò)x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=x-1,當(dāng)0≤x≤k時(shí),不等式f(x)<g(x)解集區(qū)間的長(zhǎng)度為5,則k的值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,其中左焦點(diǎn)為F(-2,0).
(1)求橢圓C的方程;
(2)若直線(xiàn)y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線(xiàn)段A,B的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn滿(mǎn)足:Sn=$\frac{3}{2}$an+n-3.
(1)求證:數(shù)列{an-1}是等比數(shù)列.
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案