分析 (2+$\sqrt{x}$-$\frac{1}{{x}^{2006}}$)10的展開式中,Tr+1=${∁}_{10}^{r}$$(2+\sqrt{x})^{r}(-\frac{1}{{x}^{2006}})^{10-r}$,必須10-r=0,解得r=10.T11=${∁}_{10}^{10}$$(2+\sqrt{x})^{10}$,再利用$(2+\sqrt{x})^{10}$的通項公式即可得出.
解答 解:(2+$\sqrt{x}$-$\frac{1}{{x}^{2006}}$)10的展開式中,Tr+1=${∁}_{10}^{r}$$(2+\sqrt{x})^{r}(-\frac{1}{{x}^{2006}})^{10-r}$,
必須10-r=0,解得r=10.
∴T11=${∁}_{10}^{10}$$(2+\sqrt{x})^{10}$,
$(2+\sqrt{x})^{10}$的通項公式Tk+1=${∁}_{10}^{k}{2}^{10-k}(\sqrt{x})^{k}$=210-k${∁}_{10}^{k}$${x}^{\frac{k}{2}}$,
令$\frac{k}{2}$=4,解得k=8.
∴在(2+$\sqrt{x}$-$\frac{1}{{x}^{2006}}$)10的展開式中,x4項的系數(shù)為1×${2}^{2}{∁}_{10}^{8}$=180
故答案為:180.
點評 本題考查了二項式定理的應用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | B. | (-$\sqrt{3}$,-1)∪(1,$\sqrt{3}$) | C. | (-$\sqrt{3}$,$\sqrt{3}$) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9 | B. | 10 | C. | 99 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com