分析 題中原方程f2(x)+bf(x)+c=0有且只有3個不同實數(shù)解,即要求對應(yīng)于f(x)=某個常數(shù)有3個不同實數(shù)解,由題意,只有當(dāng)f(x)=1時,它有三個根.故關(guān)于x的方程f2(x)+bf(x)+c=0有且只有3個不同實數(shù)解,即解分別是0,1,2,從而問題解決.
解答 解:由題意,只有當(dāng)f(x)=1時,它有三個根.
故關(guān)于x的方程f2(x)+bf(x)+c=0有且只有3個不同實數(shù)解,
即解分別是0,1,2.
故則x1x2+x2x3+x1x3=0+2+0=2.
故答案為2.
點評 本題主要考查了根的存在性及根的個數(shù)判斷,考查學(xué)生分析解決問題的能力,確定只有當(dāng)f(x)=1時,它有三個根是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1-$\sqrt{2}$ | D. | $\sqrt{2}-2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-3)∪[$\frac{5}{2}$,+∞) | B. | (-3,-2]∪[0,$\frac{5}{2}$) | C. | (-∞,-3]∪[$\frac{5}{2}$,+∞) | D. | (-3,-2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com