【題目】設(shè)f(k)是滿足不等式log2x+log2(52k1﹣x)≥2k(k∈N*)的自然數(shù)x的個(gè)數(shù).
(1)求f(k)的函數(shù)解析式;
(2)Sn=f(1)+2f(2)+…+nf(n),求Sn

【答案】
(1)

解:由原不等式得log2(52k1x﹣x2)≥2k=log222k

則x2﹣52k1x+22k≤0,

故2k1≤x≤42k1

∴f(k)=42k1﹣2k1+1=32k1+1(k∈N*);


(2)

解:kf(k)=3k2k1+k.

Sn=f(1)+2f(2)+…+nf(n)=3(1+22+…+n2n1)+(1+2+…+n),

設(shè)t=1+22+…+n2n1(1)

2t=12+222+…+n2n(2)

(1)式減(2)式得﹣t=1+2+…+2n1﹣n2n

∴t=(n﹣1)2n+1


【解析】(1)由原不等式得log2(52k1x﹣x2)≥2k=log222k , 則x2﹣52k1x+22k≤0,得到x的取值范圍后,就能求出f(k)的解析式;(2)由Sn=f(1)+2f(2)+…+nf(n)=3(1+22+…+n2n1)+(1+2+…+n),利用錯(cuò)位相減法、等差數(shù)列的求和公式,即可求得結(jié)果.
【考點(diǎn)精析】本題主要考查了對(duì)數(shù)的運(yùn)算性質(zhì)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握①加法:②減法:③數(shù)乘:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)圓錐的底面半徑為2cm,高為6cm,其中有一個(gè)高為xcm的內(nèi)接圓柱.

(1)試用x表示圓柱的側(cè)面積;
(2)當(dāng)x為何值時(shí),圓柱的側(cè)面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

討論函數(shù)的單調(diào)性;

設(shè)的兩個(gè)零點(diǎn)是, ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(1,1),過(guò)點(diǎn)P動(dòng)直線l與圓C:x2+y2﹣2y﹣4=0交與點(diǎn)A,B兩點(diǎn).
(1)若|AB|= ,求直線l的傾斜角;
(2)求線段AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 底面 , , 是棱上一點(diǎn).

I)求證:

II)若, 分別是, 的中點(diǎn),求證: ∥平面

III)若二面角的大小為,求線段的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用秦九韶算法求多項(xiàng)式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,當(dāng)x=3時(shí)的值,并將結(jié)果化為8進(jìn)制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)容量為60的樣本(60名學(xué)生的數(shù)學(xué)考試成績(jī)),分組情況如表:

分組

0.5~20.5

20.5~40.5

40.5~60.5

60.5~80.5

80.5~100.5

頻數(shù)

3

6

12

頻率

0.3


(1)填出表中所剩的空格;
(2)畫出頻率分布直方圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)計(jì)一個(gè)計(jì)算的算法.下面給出了程序的一部分,則在橫線①上不能填入下面的哪一個(gè)數(shù)(  )

A.13
B.13.5     
C.14
D.14.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知tan( +x)=﹣
(1)求tan2x的值;
(2)若x是第二象限的角,化簡(jiǎn)三角式 + ,并求值.

查看答案和解析>>

同步練習(xí)冊(cè)答案