【題目】有一個容量為60的樣本(60名學生的數(shù)學考試成績),分組情況如表:

分組

0.5~20.5

20.5~40.5

40.5~60.5

60.5~80.5

80.5~100.5

頻數(shù)

3

6

12

頻率

0.3


(1)填出表中所剩的空格;
(2)畫出頻率分布直方圖.

【答案】
(1)解:根據(jù)題意,計算0.5~20.5的頻率為 =0.05,20.5~40.5內的頻率為 =0.1,

40.5~60.5內的頻率為 =0.2,60.5~80.5內的頻率為1﹣0.05﹣0.1﹣0.2﹣0.3=0.35;

60.5~80.5內的頻數(shù)為60×0.35=21,80.5~100.5內的頻數(shù)為60×0.3=18;

填表如下;

分組

0.5~20.5

20.5~40.5

40.5~60.5

60.5~80.5

80.5~100.5

頻數(shù)

3

6

12

21

18

頻率

0.05

0.1

0.2

0.35

0.3


(2)解:計算0.5~20.5內的 = =0.0025,20.5~40.5內的 = =0.0050,

40.5~60.5內的 = =0.0100,60.5~80.5內的 = =0.0175,

80.5~100.5內的 = =0.0150;

畫出頻率分布直方圖,如下:


【解析】(1)根據(jù)題意,計算各小組內的頻率與頻數(shù),填表即可;(2)計算各小組內的 ,畫出頻率分布直方圖即可.
【考點精析】本題主要考查了頻率分布直方圖的相關知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(1)求此幾何體的體積V的大;
(2)求異面直線DE與AB所成角的余弦值;
(3)求二面角A﹣ED﹣B的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:

(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(k)是滿足不等式log2x+log2(52k1﹣x)≥2k(k∈N*)的自然數(shù)x的個數(shù).
(1)求f(k)的函數(shù)解析式;
(2)Sn=f(1)+2f(2)+…+nf(n),求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雖然吸煙有害健康,但是由于歷史以及社會的原因,吸煙也是部分公民交際的重要媒介.世界衛(wèi)生組織1987年11月建議把每年的4月7日定為世界無煙日,且從1989年開始,世界無煙日改為每年的5月31日.某報社記者專門對吸煙的市民做了戒煙方面的調查,經(jīng)抽樣只有的煙民表示愿意戒煙,將頻率視為概率.

(1)從該市吸煙的市民中隨機抽取3位,求至少有一位煙民愿意戒煙的概率;

(2)從該市吸煙的市民中隨機抽取4位, 表示愿意戒煙的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù),關于實數(shù)的不等式的解集為

1)當時,解關于的不等式:

2)是否存在實數(shù),使得關于的函數(shù))的最小值為?若存在,求實數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

定義在上的函數(shù),若,有,則稱函數(shù)為定義在上的非嚴格單增函數(shù);若,有,則稱函數(shù)為定義在上的非嚴格單減函數(shù).已知: .

(1)若函數(shù)為定義在上的非嚴格單增函數(shù),求實數(shù)的取值范圍.

(2)若函數(shù)為定義在上的非嚴格單減函數(shù),試解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在區(qū)間上的單調性;

(2)已知函數(shù),若,且函數(shù)在區(qū)間內有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)求函數(shù)的單調區(qū)間;

(2)對任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案