【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實(shí)數(shù)m、n,同時滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域?yàn)?/span>[m,n]時,其值域?yàn)?/span>[m2,n2],若存在,求出m、n的值,若不存在,請說明理由.
【答案】(1) [2,6];(2) h(a)=;(3)不存在;理由見解析.
【解析】
試題(1)當(dāng)a=1,x∈[0,1]時,令t=3x,t∈[1,3],y=g(t)=, t∈[1,3],由二次函數(shù)可求得值域。(2) φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,x∈[﹣1,1]時,t∈[,3],對稱軸為t=a.即轉(zhuǎn)化為二次函數(shù)求值域的三點(diǎn)一軸分類討論問題,分a<,≤a≤3,a>3三類進(jìn)行討論。(3)假設(shè)存在,n>m>3,由(2)知h(a)=12﹣6a,函數(shù)h(a)在(3,+∞)上是減函數(shù),所以,兩式相減得6(n﹣m)=(n﹣m)(m+n),
M+n=6,矛盾。所以不存在。
試題解析:(1)∵函數(shù)f(x)=9x﹣2a3x+3,
設(shè)t=3x,t∈[1,3],
則φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,對稱軸為t=a.
當(dāng)a=1時,φ(t)=(t﹣1)2+2在[1,3]遞增,
∴φ(t)∈[φ(1),φ(3)],
∴函數(shù)f(x)的值域是:[2,6];
(Ⅱ)∵函數(shù)φ(t)的對稱軸為t=a,
當(dāng)x∈[﹣1,1]時,t∈[,3],
當(dāng)a<時,ymin=h(a)=φ()=﹣;
當(dāng)≤a≤3時,ymin=h(a)=φ(a)=3﹣a2;
當(dāng)a>3時,ymin=h(a)=φ(3)=12﹣6a.
故h(a)=;
(Ⅲ)假設(shè)滿足題意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,
∴函數(shù)h(a)在(3,+∞)上是減函數(shù).
又∵h(yuǎn)(a)的定義域?yàn)閇m,n],值域?yàn)閇m2,n2],
則,
兩式相減得6(n﹣m)=(n﹣m)(m+n),
又∵n>m>3,∴m﹣n≠0,∴m+n=6,與n>m>3矛盾.
∴滿足題意的m,n不存在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,若僅存在兩個的整數(shù)使得,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當(dāng)>0時,<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算機(jī)在數(shù)據(jù)處理時使用的是二進(jìn)制,例如十進(jìn)制的1、2、3、4在二進(jìn)制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計(jì)的將二進(jìn)制數(shù)11111化為十進(jìn)制數(shù)的一個流程圖,則判斷框內(nèi)應(yīng)填入的條件是( )
A.i>4
B.i≤4
C.i>5
D.i≤5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足( )
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點(diǎn)
(Ⅰ)求證:⊥平面;
(Ⅱ)求證:直線∥平面;
(Ⅲ)設(shè)為線段上任意一點(diǎn),在內(nèi)的平面區(qū)域(包括邊界)是否存在點(diǎn),使,并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式的解集為 , 且函數(shù)在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍為 ( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com