2.已知函數(shù)f(x)的一個(gè)零點(diǎn)x0∈(2,4)在用二分法求精確度為0.01的x0的值時(shí),判斷區(qū)間中點(diǎn)的函數(shù)值的符號(hào)最少( 。
A.5次B.6次C.7次D.8次

分析 根據(jù)計(jì)算精確度與區(qū)間長(zhǎng)度和計(jì)算次數(shù)的關(guān)系滿足$\frac{1}{{2}^{n}}$<0.01,即可得出結(jié)論.

解答 解:設(shè)須計(jì)算n次,則n滿足$\frac{1}{{2}^{n}}$<0.01,即2n>100.
故計(jì)算7次就可滿足要求,
所以將區(qū)間(2,4)等分的次數(shù)為7次.
故選:C.

點(diǎn)評(píng) 本題考查了二分法求方程的近似解,精確度與區(qū)間長(zhǎng)度和計(jì)算次數(shù)之間存在緊密的聯(lián)系,可以根據(jù)其中兩個(gè)量求得另一個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=f(x)-3|x|為奇函數(shù),且f(-2)=9,若g(x)=f(x)+1,則g(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.正三角形ABC的邊長(zhǎng)為4,D、E分別是AB、AC的中點(diǎn),求:
(1)$\overrightarrow{DE}$•$\overrightarrow{BC}$;
(2)$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)數(shù)列{an}的首項(xiàng)為10,其前n項(xiàng)和Sn滿足3Sn+1=3Sn+2an,數(shù)列{lgan}的前n項(xiàng)和Tn的最大值為6+15lg$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$),g(x)=cos2(x-$\frac{π}{4}$)-$\frac{1}{2}$,則下列說(shuō)法中正確的是( 。
A.函數(shù)f(x),g(x)的最小正周期都為2π
B.函數(shù)f(x),g(x)都是偶函數(shù)
C.將f(x)的圖象向左平移$\frac{π}{4}$個(gè)單位可以得到g(x)的圖象
D.將f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位可以得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}滿足:a2+a4=6,a6=S3,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若k∈N*,{bn}為等比數(shù)列且b1=ak,b2=a3k,b3=S2k,求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖是一樣本的頻率分布直方圖,由圖形中的數(shù)據(jù)可以估計(jì)眾數(shù)與中位數(shù)分別是( 。
A.105,115B.105,105C.105,$\frac{310}{3}$D.115,115

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a、b為兩條異面直線,且分別在兩個(gè)平面α、β內(nèi),若α∩β=l,則直線l( 。
A.與a、b 都相交B.與a、b都不相交
C.至少與a、b中的一條相交D.至多與a、b中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=x+2cosx在(0,2π)上的單調(diào)遞減區(qū)間為$(\frac{π}{6},\frac{5π}{6})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案