已知函數(shù)f(x)=axlnx,,其中a∈R.
(1)令,試討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的,總有f(x1)-f(x2)<g(x1)-g(x2)成立,試求實(shí)數(shù)a的取值范圍.(其中e是自然對(duì)數(shù)的底數(shù))
【答案】分析:(1)利用導(dǎo)數(shù)的運(yùn)算法則求出h(x),通過(guò)分類(lèi)討論a即可得出其單調(diào)性;
(2)由已知對(duì)任意的,總有f(x1)-f(x2)<g(x1)-g(x2)成立,即f(x1)-g(x1)<f(x2)-g(x2),令,可得y=F(x)在區(qū)間(e,e2)上為增函數(shù).于是F'(x)=alnx+x-1≥0,對(duì)x∈(e,e2)恒成立,通過(guò)分離參數(shù),利用導(dǎo)數(shù)求出最值即可.
解答:解:(1)∵,(x>0).

①當(dāng)a≤0時(shí),f(x)的遞減區(qū)間為(0,1),遞增區(qū)間為(1,+∞);
②當(dāng)0<a<1時(shí),f(x)的遞增區(qū)間為(0,a),(1,+∞),遞減區(qū)間為(a,1);
③當(dāng)a=1時(shí),f(x)的遞增區(qū)間為(0,+∞);
④當(dāng)a>1時(shí),f(x)的遞增區(qū)間為(0,1),(a,+∞),遞減區(qū)間為(1,a).
(2)對(duì)任意的,總有f(x1)-f(x2)<g(x1)-g(x2)成立,
即f(x1)-g(x1)<f(x2)-g(x2

由題意得y=F(x)在區(qū)間(e,e2)上為增函數(shù).
∴F'(x)=alnx+x-1≥0,對(duì)x∈(e,e2)恒成立,
所以對(duì)x∈(e,e2)恒成立,

,
所以ϕ(x)在區(qū)間(e,e2)上單調(diào)遞減,
所以ϕ(x)<ϕ(e)=1-e,
所以a≥1-e. 
所以a≥1-e. …(10分)
點(diǎn)評(píng):本題綜合考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值、恒成立問(wèn)題轉(zhuǎn)化為求最值問(wèn)題等基礎(chǔ)知識(shí)與基本技能,考查了分類(lèi)討論的思想方法、分析問(wèn)題和解決問(wèn)題的能力、推理能力與計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線(xiàn)的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案