6.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,則該雙曲線的離心率e的取值范圍是(1,2).

分析 由$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,可得∠AEB為銳角,即|AF|<|EF|,將此式轉(zhuǎn)化為關(guān)于a、c的不等式,化簡(jiǎn)整理即可得到該雙曲線的離心率e的取值范圍.

解答 解若$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,即cos∠AEB>0,則∠AEB為銳角,
由此可得Rt△AFE中,∠AEF<45°,得|AF|<|EF|
令x=-c,則y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
可得|AF|=$\frac{^{2}}{a}$,|EF|=a+c,
∴$\frac{{c}^{2}-{a}^{2}}{a}$<a+c,即c-a<a
即c<2a,解之得1<e<2.
∴該雙曲線的離心率e的取值范圍是(1,2).
故答案為:(1,2).

點(diǎn)評(píng) 本題考查雙曲線離心率的范圍,著重考查了雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,8),若A、B、C三點(diǎn)共線,則k=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.經(jīng)過(guò)點(diǎn)A(1,1),且與直線l:3x-2y+1=0平行的直線方程為3x-2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F,作圓x2+y2=a2的切線FM與y軸交于點(diǎn)P(0,b),切圓于點(diǎn)M,則雙曲線的離心率e為$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的焦距為$10\sqrt{5}$,點(diǎn)P(1,2)在雙曲線C的漸近線上,則雙曲線C的方程為(  )
A.$\frac{y^2}{20}-\frac{x^2}{5}=1$B.$\frac{y^2}{5}-\frac{x^2}{20}=1$C.$\frac{y^2}{100}-\frac{x^2}{25}=1$D.$\frac{y^2}{25}-\frac{x^2}{100}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1和F2,左右頂點(diǎn)分別為A1和A2,過(guò)焦點(diǎn)F2與x軸垂直的直線和雙曲線的一個(gè)交點(diǎn)為P,若|$\overrightarrow{P{A}_{1}}$|是|$\overrightarrow{{F}_{1}{F}_{2}}$|和|$\overrightarrow{{A}_{1}{F}_{2}}$|的等比中項(xiàng),則該雙曲線的離心率為(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{2}$+1D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.若直線l:y=kx+m與雙曲線$\frac{{x}^{2}}{4}$-y2=1交于E、F(不重合左右頂點(diǎn)),且EF為直徑的圓過(guò)雙曲線的右頂點(diǎn)D.證明:直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與拋物線D:y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),雙曲線的離心率為$\frac{2\sqrt{3}}{3}$,△ABO的面積為2$\sqrt{3}$.
(Ⅰ)求雙曲線C的漸近線方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.從2015名學(xué)生中選50人組成參觀團(tuán),先用簡(jiǎn)單隨機(jī)抽樣方法剔除15人,再將其余2000人從0到1999編號(hào),按等距系統(tǒng)抽樣方法選取,若第一組采用抽簽法抽到的號(hào)碼是30,則最后一組入選的號(hào)碼是( 。
A.1990B.1991C.1989D.1988

查看答案和解析>>

同步練習(xí)冊(cè)答案