【題目】設(shè)橢圓的右焦點(diǎn)為
,過點(diǎn)
作與
軸垂直的直線
交橢圓于
,
兩點(diǎn)(點(diǎn)
在第一象限),過橢圓的左頂點(diǎn)和上頂點(diǎn)的直線
與直線
交于
點(diǎn),且滿足
,設(shè)
為坐標(biāo)原點(diǎn),若
,
,則該橢圓的離心率為( )
A. B.
C.
或
D.
【答案】A
【解析】分析:根據(jù)向量共線定理及,
,可推出
,
的值,再根據(jù)過點(diǎn)
作與
軸垂直的直線
交橢圓于
,
兩點(diǎn)(點(diǎn)
在第一象限),可推出
,
兩點(diǎn)的坐標(biāo),然后求出過橢圓的左頂點(diǎn)和上頂點(diǎn)的直線
的方程,即可求得
點(diǎn)的坐標(biāo),從而可得
,
,
三者關(guān)系,進(jìn)而可得橢圓的離心率.
詳解:∵、
、
三點(diǎn)共線,
∴
又∵
∴或
∵
∴
∵過點(diǎn)作與
軸垂直的直線
交橢圓于
,
兩點(diǎn)(點(diǎn)
在第一象限)
∴,
∵過橢圓的左頂點(diǎn)和上頂點(diǎn)的直線與直線
交于
點(diǎn)
∴直線的方程為為
∴
∵
∴,即
.
∴,即
.
∴
∵
∴
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C對(duì)邊的邊長分別是a,b,c,且a(cosB+cosC)=b+c.
(1)求證:A;
(2)若△ABC外接圓半徑為1,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓臺(tái)的上、下底面半徑分別為、
,母線長
,從圓臺(tái)母線
的中點(diǎn)
拉一條繩子繞圓臺(tái)側(cè)面轉(zhuǎn)到
點(diǎn)(
在下底面),求:
(1)繩子的最短長度;
(2)在繩子最短時(shí),上底圓周上的點(diǎn)到繩子的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列關(guān)于函數(shù)
的單調(diào)性說法正確的是( )
A.函數(shù)在
上不具有單調(diào)性
B.當(dāng)時(shí),
在
上遞減
C.若的單調(diào)遞減區(qū)間是
,則a的值為
D.若在區(qū)間
上是減函數(shù),則a的取值范圍是
E.在區(qū)間
上不可能是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在吸煙與患肺病是否相關(guān)的判斷中,有下面的說法:
(1)從獨(dú)立性分析可知在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為吸煙與患肺病有關(guān)系時(shí),是指有的可能性使得推斷錯(cuò)誤.
(2)從獨(dú)立性分析可知在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系時(shí),若某人吸煙,則他有的可能患有肺病;
(3)若,則在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺��;
其中說法正確的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1)現(xiàn)按分層抽樣從質(zhì)量為,
的芒果中隨機(jī)抽取
個(gè),再從這
個(gè)中隨機(jī)抽取
個(gè),記隨機(jī)變量
表示質(zhì)量在
內(nèi)的芒果個(gè)數(shù),求
的分布列及數(shù)學(xué)期望.
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷商來收購芒果,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對(duì)質(zhì)量低于克的芒果以
元/個(gè)收購,高于或等于
克的以
元/個(gè)收購.
通過計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),如果存在實(shí)數(shù)
使得
,那么稱
為
的生成函數(shù).
(1)函數(shù),是否為
的生成函數(shù)?說明理由;
(2)設(shè),
,當(dāng)
時(shí)生成函數(shù)
,求
的對(duì)稱中心(不必證明);
(3)設(shè),
,取
,
,生成函數(shù)
,若函數(shù)
的最小值是5,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;
②設(shè)有一個(gè)線性回歸方程,變量x增加1個(gè)單位時(shí),y平均增加5個(gè)單位;
③設(shè)具有相關(guān)關(guān)系的兩個(gè)變量x,y的相關(guān)系數(shù)為r,則|r|越接近于0,x和y之間的線性相關(guān)程度越強(qiáng);
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2的值,則K2的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大.
以上錯(cuò)誤結(jié)論的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)面PAD是正三角形,側(cè)面底面ABCD,M是PD的中點(diǎn).
(1)求證:平面PCD;
(2)求側(cè)面PBC與底面ABCD所成二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com