12.已知函數(shù)f(x)=-x2017-x+sinx,若?θ∈(0,$\frac{π}{2}$),f(cos2θ+3msinθ)+f(-3m-2)>0恒成立,則實數(shù)m的取值范圍是(  )
A.[-$\frac{1}{3}$,+∞)B.(-∞,$-\frac{1}{3}$]C.(-∞,$\frac{1}{3}$]D.[$\frac{1}{3}$,+∞)

分析 確定函數(shù)f(x)在(-∞,+∞)上為減函數(shù),化抽象不等式為具體不等式,分離參數(shù),利用斜率,即可求出實數(shù)m的取值范圍.

解答 解:函數(shù)f(x)為奇函數(shù)且f′(x)=-2017x2016-1+cosx≤0,
所以函數(shù)f(x)在(-∞,+∞)上為減函數(shù),
故f(cos2θ+3msinθ)+f(-3m-2)>0⇒3m(1-sinθ)>-1-sin2θ,
當(dāng)θ∈(0,$\frac{π}{2}$)時,3m>$\frac{{sin}^{2}θ+1}{sinθ-1}$,而 $\frac{{sin}^{2}θ+1}{sinθ-1}$可以視為(sinθ,sin2θ),(1,-1)兩點的直線斜率,
而(sinθ,sin2θ)在曲線y=x2,x∈(0,1),可知 $\frac{{sin}^{2}θ+1}{sinθ-1}$<-1,
故3m≥-1⇒m≥-$\frac{1}{3}$.
故選:A.

點評 本題考查函數(shù)的圖象及其恒成立問題、數(shù)形結(jié)合思想的應(yīng)用,考查學(xué)生分析轉(zhuǎn)化問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列函數(shù)中,①f(x)=$\sqrt{x}$②f(x)=$\frac{1}{x}$③f(x)=ex④f(x)=sinx既是奇函數(shù)又存在零點的是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某一算法程序框圖如圖所不,則輸出的S的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)分成5組,制成如圖所示頻率分布直方圖.
(I)求圖中x的值;
(II)已知各組內(nèi)的男生數(shù)與女生數(shù)的比均為2:l,若在滿意度評分值為[90,100]的人中隨機(jī)抽取2人進(jìn)行座談,求所抽取的兩人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|$\frac{x+3}{x+1}$≤0},B={-2,-1,0,1},則A∩B的子集個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|1<x<4},B={y|y=2-x,x∈A},集合$C=\left\{{x|y=ln\frac{2-x}{x+1}}\right\}$,則集合B∩C=( 。
A.{x|-1<x<1}B.{x|-1≤x≤1}C.{x|-1<x<2}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)$f(x)=sinωx+sin(ωx-\frac{π}{2})$.
(1)若$ω=\frac{1}{2}$,求f(x)的最大值及相應(yīng)的x的取值范圍;
(2)若$x=\frac{π}{8}$是f(x)的一個零點,且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足sin2A+sin2B=sin2C-sinAsinB.
(Ⅰ)求角C;
(Ⅱ)若$c=2\sqrt{6}$,△ABC的中線CD=2,求△ABC面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow$=(cosωx,$\sqrt{3}$cosωx),其中0<ω<2,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{1}{2}$,其中圖象的一條對稱軸為x=$\frac{π}{6}$.
(1)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{2π}{3}$個單位,再將所得圖象上各點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對稱中心.

查看答案和解析>>

同步練習(xí)冊答案