【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)時(shí).證明:.
【答案】(1)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(2)時(shí),無(wú)極值,時(shí),有極大值,無(wú)極小值;(3)證明見(jiàn)解析.
【解析】
試題分析:(1)求出函數(shù)的導(dǎo)數(shù),求得和的解集,即可求解函數(shù)的單調(diào)區(qū)間;(2)由題意得出的解析式,得出,按和兩種情況分類(lèi)討論,即可得出的極大值與極小值;(3)設(shè),轉(zhuǎn)化為證,只需證明,取出,得出的單調(diào)性,設(shè)的根為,此時(shí),進(jìn)而可得以證明.
試題解析:(1)().
令,即,得,故的增區(qū)間為;
令,即,得,故的減區(qū)間為;
∴的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為.
(2)()
()
當(dāng)時(shí),恒有∴在上為增函數(shù),故在上無(wú)極值;
當(dāng)時(shí),令,得
,,單調(diào)遞增,,,單調(diào)遞減.
∴,無(wú)極小值;
綜上所述:時(shí),無(wú)極值
時(shí),有極大值,無(wú)極小值.
(3)證明:設(shè)(),則即證,只要證
∵,∴,
又在上單調(diào)遞增
∴方程有唯一的實(shí)根,且.
∵當(dāng)時(shí),.當(dāng)時(shí),
∴當(dāng)時(shí),
∵即,則 ∴
∴原命題得證
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽,那么互斥但不對(duì)立的兩
個(gè)事件是( )
A. 至少有1名男生與全是女生
B. 至少有1名男生與全是男生
C. 至少有1名男生與至少有1名女生
D. 恰有1名男生與恰有2名女生
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中是大于的常數(shù).
(1)求函數(shù)的定義域;
(2)當(dāng)時(shí), 求函數(shù)在上的最小值;
(3)若對(duì)任意恒有,試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若m,n,m∥,n∥,則∥;
②若∥,l,則l∥;
③若l⊥m,l⊥n,則m∥n;
④若l⊥,l∥,則⊥ .
其中真命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不等式|sin x+tan x|<a的解集為N,不等式|sin x|+|tan x|<a的解集為M,則解集M與N的關(guān)系是( )
A. NM B. MN C. M=N D. MN
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a,b∈R,則下列命題正確的是( )
A. 若a>b,則a2>b2 B. 若|a|>b,則a2>b2
C. 若a>|b|,則a2>b2 D. 若a≠|(zhì)b|,則a2≠b2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù) z=i(1+i)(其中 i 是虛數(shù)單位),則復(fù)數(shù) z 對(duì)應(yīng)的點(diǎn)位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,側(cè)面底面,,底面為直角梯形,其中,,,為中點(diǎn).
(1)求證:平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,圖象與軸交于點(diǎn)(異于原點(diǎn)),在處的切線為,圖象與軸交于點(diǎn)且在該點(diǎn)處的切線為,并且與平行.
(Ⅰ)求的值;
(Ⅱ)已知實(shí)數(shù),求函數(shù)的最小值;
(Ⅲ)令,給定,對(duì)于兩個(gè)大于1的正數(shù),存在實(shí)數(shù)滿足:,,并且使得不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com