某化工廠引進一條先進生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近視地表示為,已知此生產(chǎn)線的年產(chǎn)量最大為210噸.
(Ⅰ) 求年產(chǎn)量為多少噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(Ⅱ)若每噸產(chǎn)品平均出廠價為40萬元,那么當年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?
(Ⅰ)年產(chǎn)量為噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,最低成本為萬元;(Ⅱ)當年產(chǎn)量為噸時,可以獲得最大利潤,最大利潤是萬元.
解析試題分析:(Ⅰ)先根據(jù)定義將平均成本的表達式求出來,然后利用基本不等式求平均成本的最小值,但需注意基本不等式適用時的三個基本條件;(Ⅱ)先將總利潤的函數(shù)解析式求出來,然后利用函數(shù)的單調(diào)性與最值的相關(guān)方法求總利潤的最大值.
試題解析:(Ⅰ)每噸產(chǎn)品的平均成本
當且僅當取等號即x=200<210 滿足。
年產(chǎn)量為200噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,最低成本為32萬元; 5分
(Ⅱ)設總利潤為萬元,
則
在上是增函數(shù)時,有最大值為
年產(chǎn)量為210噸時,可以獲得最大利潤1660萬元. 10分
考點:基本不等式、二次函數(shù)的最值
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=,(x>0,).
(1) 當a=4時,求函數(shù)f(x)的最小值;
(2) 若函數(shù)>-x+4,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某地需要修建一條大型輸油管道通過240公里寬的沙漠地帶,該段輸油管道兩端的輸油站已建好,余下工程是在該段兩端已建好的輸油站之間鋪設輸油管道和等距離修建增壓站(又稱泵站).經(jīng)預算,修建一個增壓站的工程費用為400萬元,鋪設距離為x公里的相鄰兩增壓站之間的輸油管道費用為x2+x萬元.設余下工程的總費用為y萬元.
(1)試將y表示成x的函數(shù);
(2)需要修建多少個增壓站才能使y最小,其最小值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com