【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)記的最大值為,若,求證:

(3)若,記集合中的最小元素為,設(shè)函數(shù),求證:的極小值點(diǎn).

【答案】(1)增區(qū)間為,減區(qū)間為;(2)見解析;(3)見解析

【解析】分析:(1)分別解不等式可得的增區(qū)間和減區(qū)間.

(2),根據(jù)得到,把該式變形為,證明函數(shù)不等式恒成立即可.

(3)根據(jù)(1)中函數(shù)的單調(diào)性及可得,因此 ,分別討論函數(shù)在的單調(diào)性可判斷的極小值點(diǎn).

詳解:(1),

因?yàn)?/span>,得;

,;

所以,的增區(qū)間為,減區(qū)間為.

(2)由(1)知,.

,∴,

,∴ ,∴,

設(shè),,

所以,上單調(diào)遞增,,,,

,,所以.

(3)(1)可知,在區(qū)間單調(diào)遞增,又時(shí),,

易知,遞增,,

,時(shí),;時(shí),.

當(dāng)時(shí),

于是時(shí),, (所以,若證明,便能證明),

,

,∵,∴,

內(nèi)單調(diào)遞增,∴,

,

內(nèi)單調(diào)遞增.

,于是時(shí),

,

遞減.

當(dāng)時(shí),相應(yīng)的

遞增.故的極小值點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四個(gè)命題:

①如果向量共線,則;

的充分不必要條件;

③命題,的否定是,;

④“指數(shù)函數(shù)是增函數(shù),而是指數(shù)函數(shù),所以是增函數(shù)”此三段論大前提錯(cuò)誤,但推理形式是正確的.

以上命題正確的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)在曲線上取兩點(diǎn),與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某跨國飲料公司在對(duì)全世界所有人均GDP(即人均純收入)在千美元的地區(qū)銷售該公司A飲料的情況調(diào)查時(shí)發(fā)現(xiàn):該飲料在人均GDP處于中等的地區(qū)銷售量最多,然后向兩邊遞減.

1)下列幾個(gè)模擬函數(shù):①;②;③;④x表示人均GDP,單位:千美元,y表示年人均A飲料的銷售量,單位:L.用哪個(gè)模擬函數(shù)來描述人均A飲料銷售量與地區(qū)的人均GDP關(guān)系更合適?說明理由;

2)若人均GDP1千美元時(shí),年人均A飲料的銷售量為,人均4千美元時(shí),年人均A飲料的銷售量為,把(1)中你所選的模擬函數(shù)求出來,并求出各個(gè)地區(qū)年人均A飲料的銷售量最多是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京101中學(xué)校園內(nèi)有一個(gè)“少年湖”,湖的兩側(cè)有一個(gè)音樂教室和一個(gè)圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測量的數(shù)據(jù)的不同方案:①測量∠A,AC,BC;②測量∠A,B,BC;③測量∠C,AC,BC;④測量∠A,C,B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題的真假.

1)過一條直線的平面有無數(shù)多個(gè);

2)如果兩個(gè)平面有兩個(gè)公共點(diǎn),那么它們就有無數(shù)多個(gè)公共點(diǎn),并且這些公共點(diǎn)都在直線上;

3)兩個(gè)平面的公共點(diǎn)組成的集合,可能是一條線段;

4)兩個(gè)相交平面可能存在不在一條直線上的3個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)滿足

Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

Ⅱ)設(shè)是軌跡上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)在直線上,線段的中垂線與交于兩點(diǎn),是否存在點(diǎn),使以為直徑的圓經(jīng)過點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊答案