20.求與直線2x-y+10=0平行且在y軸、x軸上截距之和為2的直線方程.

分析 設(shè)與直線2x-y+10=0平行的直線方程為2x-y+c=0,求出這條直線在y軸、x軸上截距之和,由此能求出該直線方程.

解答 解:設(shè)與直線2x-y+10=0平行的直線方程為2x-y+c=0,
∵該直線方程與直線2x-y+10=0平行且在y軸、x軸上截距之和為2,
∴c+(-$\frac{c}{2}$)=2,
解得c=4,
∴該直線方程為2x-y+4=0.

點(diǎn)評(píng) 本題考查直線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線與直線平行的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=sinx-cosx的值域?yàn)?( 。
A.[-$\sqrt{2}$,$\sqrt{2}$]B.($\sqrt{2}$,$\sqrt{2}$)C.[-$\sqrt{2}$,2)D.(-$\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在直角梯形ABCD中,AB=2AD=2DC,E為BC邊上的一點(diǎn),$\overrightarrow{BC}$=3$\overrightarrow{EC}$,F(xiàn)為AE中點(diǎn),則$\overrightarrow{BF}$=( 。
A.$\frac{2}{3}\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AD}$B.$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}\overrightarrow{AD}$C.-$\frac{2}{3}\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$D.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),則f′(2)=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)O是△ABC所在平面內(nèi)一點(diǎn),且點(diǎn)O不在△ABC三邊所在直線上,設(shè)點(diǎn)P滿足$\overrightarrow{OP}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OB}$+λ3$\overrightarrow{OC}$(其中λ1∈R,i=1,2,3),則下列敘述中正確的是(  )
①當(dāng)λ1=1且λ23=0時(shí),點(diǎn)P與點(diǎn)A重合
②當(dāng)λ12=1且λ3=0時(shí),點(diǎn)P在直線AB上
③當(dāng)λ123=1且λ1>0(其中i=1,2,3)時(shí),點(diǎn)P在△ABC內(nèi).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知A(1,-2,1),向量$\overrightarrow{a}$=(-3,4,12),若向量$\overrightarrow{AB}$與$\overrightarrow{a}$的方向相同,且|$\overrightarrow{AB}$|=2|$\overrightarrow{a}$|
(1)求點(diǎn)B的坐標(biāo);
(2)若點(diǎn)M在直線OA(O為坐標(biāo)原點(diǎn))上運(yùn)動(dòng),當(dāng)$\overrightarrow{MA}$•$\overrightarrow{MB}$取最小值時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1的各個(gè)頂點(diǎn)與各楞的中點(diǎn)共20個(gè),任取2點(diǎn)連成直線,在這些直線中任取一條,它與對(duì)角線BD1垂直的概率為( 。
A.$\frac{21}{190}$B.$\frac{21}{166}$C.$\frac{27}{166}$D.$\frac{27}{154}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx.
(1)若直線y=2x+p(p∈R)是函數(shù)y=f(x)圖象的一條切線,求實(shí)數(shù)p的值;
(2)若函數(shù)g(x)=x-$\frac{m}{x}$-2f(x)(m∈R)有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,水平放置的△ABC的斜二測(cè)直觀圖是圖中的△A′B′C′,已知A′C′=6,B′C′=4,則AB邊的實(shí)際長(zhǎng)度是10.

查看答案和解析>>

同步練習(xí)冊(cè)答案