8.已知圓C:x2+y2=4,直線l:y=-x+b,圓C上恰有3個點(diǎn)到直線l的距離為1,則b=( 。
A.$±\sqrt{2}$B.$\sqrt{2}$C.-$\sqrt{2}$D.以上答案都不對

分析 若圓C上恰有3個點(diǎn)到直線l的距離等于1,則O到直線l:y=-x+b的距離d等于1,代入點(diǎn)到直線的距離公式,可得答案.

解答 解:由圓C的方程:x2+y2=4,可得圓C的圓心為原點(diǎn)O(0,0),半徑為2
若圓C上恰有3個點(diǎn)到直線l的距離等于1,則O到直線l:y=-x+b的距離d等于1
直線l的一般方程為:x+y-b=0,∴d=$\frac{|-b|}{\sqrt{2}}$=1
解得b=±$\sqrt{2}$.
故選A.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,其中分析出圓心O到直線l:y=-x+b的距離d等于1是解解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a,b是非零實(shí)數(shù),若a>b,則一定有( 。
A.$\frac{1}{a}<\frac{1}$B.a2>abC.$\frac{1}{{a{b^2}}}>\frac{1}{{{a^2}b}}$D.$a-\frac{1}{a}>b-\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=$\frac{4{a}_{n}}{{a}_{n}+2}$(n∈N+).
(Ⅰ)證明:數(shù)列$\{\frac{1}{{a}_{n}}-\frac{1}{2}\}$是等比數(shù)列;
(Ⅱ)設(shè)bn=$\frac{n}{{a}_{n}}-\frac{n}{2}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線y=x+m與橢圓$\frac{x^2}{2}+{y^2}$=1相切,則m的值為(  )
A.±$\sqrt{3}$B.±$\sqrt{2}$C.±1D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:根據(jù)下表可得到回歸方程$\widehat{y}$=bx+a中的b=10.6,據(jù)此模型預(yù)告廣告費(fèi)用為10萬元時的銷售額為(  )
廣告費(fèi)用x(萬元)2345
銷售額y(萬元)26394958
A.111.9萬元B.112.1萬元C.113.7萬元D.113.9萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知三棱柱ABC-A1B1C1的側(cè)面與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N,P分別是CC1,BC,A1B1的中點(diǎn).
(1)求證:PN⊥AM;
(2)若直線MB與平面PMN所成的角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知動點(diǎn)M到點(diǎn)F(0,1)的距離與到直線y=4的距離之和為5.
(1)求動點(diǎn)M的軌跡E的方程;
(2)若動直線l:y=x+m與軌跡E有兩個不同的公共點(diǎn)A、B,求弦長|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.頂點(diǎn)在原點(diǎn),焦點(diǎn)坐標(biāo)為(-3,0)的拋物線的標(biāo)準(zhǔn)方程y2=-12x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的偶函數(shù)f(x)滿足f(x-3)=-f(x),對?x1,x2∈[0,3]且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則有( 。
A.f(49)<f(64)<f(81)B.f(49)<f(81)<f(64)C.f(64)<f(49)<f(81)D.f(64)<f(81)<f(49)

查看答案和解析>>

同步練習(xí)冊答案