,滿足.    (1) 求函數(shù)的單調(diào)遞增區(qū)間;
(2)設三內(nèi)角所對邊分別為,求上的值域.
(1)單調(diào)增區(qū)間為; (2) .

試題分析:(1)

的單調(diào)增區(qū)間為   6分
(2),由余弦定理可變形為,由正弦定理為

       12分
點評:典型題,三角函數(shù)的圖象和性質(zhì)、三角函數(shù)圖象的變換是高考考查的重點,為研究三角函數(shù)的性質(zhì),往往要利用誘導公式、和差倍半公式進行“化一” 。(II)首先應用正弦定理、余弦定理確定B的范圍,進一步研究指定角的范圍內(nèi)三角函數(shù)最大值、最小值問題。在確定角的范圍時易出錯,要特別細心。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的定義域是,的導函數(shù),且
內(nèi)恒成立.
求函數(shù)的單調(diào)區(qū)間;
,求的取值范圍;
(3) 設的零點,,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)在R上為單調(diào)函數(shù),則a的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)上的最小值是            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的圖象上關于原點對稱的點有      對.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的值域是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)f(x)=x3-12x在區(qū)間(k-1,k+1)上不是單調(diào)函數(shù),則實數(shù)k的取值范圍是(  )
A.k≤-3或-1≤k≤1或k≥3B.-3<k<-1或1<k<3
C.-2<k<2D.不存在這樣的實數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

理科已知函數(shù),當時,函數(shù)取得極大值.
(Ⅰ)求實數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導數(shù)都存在,且,則存在,使得.試用這個結(jié)論證明:若,函數(shù),則對任意,都有;(Ⅲ)已知正數(shù)滿足求證:當時,對任意大于,且互不相等的實數(shù),都有

查看答案和解析>>

同步練習冊答案