設復數(shù)z滿足(1-i)z=2i,則z的共軛復數(shù)
.
z
( 。
A、-1+iB、-1-i
C、1+iD、1-i
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:把已知的等式變形,然后利用復數(shù)代數(shù)形式的乘除運算化簡,則其共軛復數(shù)可求.
解答: 解:由(1-i)z=2i,得z=
2i
1-i
=
2i(1+i)
(1-i)1+i)
=
2i(1+i)
2
=-1+i
=
2i(1+i)
2
=-1+i
,
.
z
=-1-i

故選:B.
點評:本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinx的圖象與g(x)=cosx的圖象關于某條直線對稱,這條直線可以是( 。
A、x=
4
B、x=
2
C、x=-
2
D、x=-
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
-i
1-i
=( 。
A、-
1
2
-
1
2
i
B、-
1
2
+
1
2
i
C、
1
2
+
1
2
i
D、
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={y|y=x2-1,x∈R},集合N={x|y=
2-x2
,x∈R},則(∁RM)∩N(  )
A、-
2
,-1)
B、[-
2
,-1)
C、[-
2
,1)
D、[-
2
,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=
1+2i
3-i
,i是虛數(shù)單位,則復數(shù)虛部是( 。
A、
1
10
i
B、
1
10
C、
7
10
D、
7
10
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于x的函數(shù)y=cos2x-asinx+b,當a=-1時有零點,求此時實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin
θ
2
-2cos
θ
2
=0,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2011
2011
,設F(x)=f(x+3),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),當b-a取得最小值時,a+b的值為( 。
A、-1B、-4C、-7D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+2(a-1)x+3的單調(diào)區(qū)間是(-∞,3],則實數(shù)a為
 

查看答案和解析>>

同步練習冊答案