13.已知三條不重合的直線l,m,n與平面α,下面結論正確的是( 。
A.l∥α,m∥α,則l∥mB.l⊥α,m⊥α,則l∥mC.l⊥n,m⊥n,則l∥mD.l?α,m∥α,則l∥m

分析 在A中,l與m相交、平行或異面;在B 中,由直線與平面垂直的性質(zhì)定理得l∥m;在C中,l與m相交、平行或異面;在D中,l與m平行或異面.

解答 解:由三條不重合的直線l,m,n與平面α,知:
在A中,l∥α,m∥α,則l與m相交、平行或異面,故A錯誤;
在B中,l⊥α,m⊥α,則由直線與平面垂直的性質(zhì)定理得l∥m,故B正確;
在C中,l⊥n,m⊥n,則l與m相交、平行或異面,故C錯誤;
在D中,l?α,m∥α,則l與m平行或異面,故D錯誤.
故選:B.

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關系的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在正四面體A-BCD中,有下列四個命題,其中真命題的個數(shù)為( 。
①每組對棱異面垂直;
②連接每組對棱的中點,則這三線交于一點;
③在棱CD上至少存在一個點E,使∠AEB=$\frac{π}{2}$;
④正四面體的外接球的半徑是其棱長的$\frac{{\sqrt{6}}}{4}$倍.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.曲線y=x3-x2+4在點(1,4)處的切線的傾斜角為( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知等比數(shù)列{an}滿足:a2+a3=3,a3+a4=6,那么$\sqrt{{a_4}•{a_{12}}}$=( 。
A.128B.81C.64D.49

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設定義在R上的奇函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(1-t),且$x∈[{0,\frac{1}{2}}]$時,f(x)=-x2,則$f({\frac{3}{2}})$的值等于( 。
A.$\frac{9}{4}$B.$-\frac{9}{4}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對的邊分別是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{sinC}{c}$,b2+c2-a2=$\frac{6}{5}$bc,則tanB=( 。
A.4B.$\frac{1}{4}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在(x2-x+2y)5的展開式中,x4y2的系數(shù)為( 。
A.-120B.120C.30D.-80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知三點A(2,3),B(-1,-1),C(6,k),其中k為常數(shù).若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角的余弦值為0或-$\frac{24}{25}$,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知f(x)=sin(2x+φ),若$f(\frac{π}{3})=0$,則函數(shù)f(x)圖象的一條對稱軸直線是(  )
A.$x=\frac{π}{3}$B.$x=\frac{2π}{3}$C.$x=\frac{5π}{12}$D.$x=\frac{7π}{12}$

查看答案和解析>>

同步練習冊答案