設(shè)數(shù)列為等比數(shù)列,數(shù)列滿足,,已知,,其中.

(Ⅰ) 求數(shù)列的首項(xiàng)和公比;

(Ⅱ) 當(dāng)時(shí),求;

(Ⅲ) 設(shè)為數(shù)列的前項(xiàng)和,若對(duì)于任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.

 

【答案】

解:(Ⅰ) 由已知,所以,

, 所以,

解得,所以數(shù)列的公比.……………………………2分

(Ⅱ) 因?yàn)?nbsp; ,

,……………①

,……………②

①得,…………………………4分

所以,

當(dāng)時(shí),.………………………………6分

(Ⅲ),………………………………7分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090810181774048190/SYS201209081018527186344642_DA.files/image017.png">,所以,由,

注意到,當(dāng)為奇數(shù)時(shí),當(dāng)為偶數(shù)時(shí),

所以最大值為,最小值為.………………………………9分

對(duì)于任意的正整數(shù)都有,

所以,.

即所求實(shí)數(shù)的取值范圍是.……………………………………10分

【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式的求解,以及數(shù)列前n項(xiàng)和的運(yùn)用。

(1)因?yàn)樵O(shè)數(shù)列為等比數(shù)列,數(shù)列滿足,,已知,,其中,那么可知由已知,所以,

, 所以,

解得,所以數(shù)列的公比

(2)利用錯(cuò)位相減法得到數(shù)列bn的公式。

(3)設(shè)為數(shù)列的前項(xiàng)和,若對(duì)于任意的正整數(shù),都有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090810181774048190/SYS201209081018527186344642_DA.files/image016.png">,可以解得。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青浦區(qū)一模)設(shè)m>3,對(duì)于項(xiàng)數(shù)m的有窮數(shù)列{an},令bk為a1,a2,…,ak(k≤m)中最大值,稱(chēng)數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1,2,…,m(m>3)的所有排列,將每種排列都視為一個(gè)有窮數(shù)列{cn}.
(1)若m=4,寫(xiě)出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn};
(2)是否存在數(shù)列{cn}的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請(qǐng)說(shuō)明理由.
(3)是否存在數(shù)列{cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列{cn}的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•房山區(qū)二模)設(shè)m>3,對(duì)于項(xiàng)數(shù)為m的有窮數(shù)列{an},令bk為a1,a2,a3…ak(k≤m)中的最大值,稱(chēng)數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1、2…m(m>3)的所有排列,將每種排列都視為一個(gè)有窮數(shù)列{cn}.
(Ⅰ)若m=5,寫(xiě)出創(chuàng)新數(shù)列為3,5,5,5,5的所有數(shù)列{cn};
(Ⅱ)是否存在數(shù)列{cn}的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)是否存在數(shù)列{cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出所有符合條件的數(shù)列{cn}的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若數(shù)列滿足,則稱(chēng)數(shù)列為“平方遞推數(shù)列”。已知數(shù)列中,,點(diǎn)在函數(shù)的圖像上,其中為正整數(shù)。

  (1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列。

  (2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)之積為,即,求數(shù)列的通項(xiàng)及關(guān)于的表達(dá)式。

(3)記,求數(shù)列的前項(xiàng)之和,并求使的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省淄博市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

若數(shù)列滿足,則稱(chēng)數(shù)列平方遞推數(shù)列.已知數(shù)列,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).

1)證明數(shù)列平方遞推數(shù)列,且數(shù)列為等比數(shù)列;

2設(shè)(1)中平方遞推數(shù)列的前項(xiàng)積為,

,求;

3)在(2)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市青浦區(qū)高三上學(xué)期期終學(xué)習(xí)質(zhì)量調(diào)研測(cè)試數(shù)學(xué)試卷 題型:解答題

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè),對(duì)于項(xiàng)數(shù)為的有窮數(shù)列,令中最大值,稱(chēng)數(shù)列的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.

考查自然數(shù)的所有排列,將每種排列都視為一個(gè)有窮數(shù)列

(1)若,寫(xiě)出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;

(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案