7.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點(diǎn)(4,0),且其漸近線與圓(x-2)2+y2=3相切,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{16}$=1

分析 求出雙曲線的漸近線方程,圓的圓心與半徑,利用已知條件列出方程求解即可.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點(diǎn)(4,0),可得c=4,a2+b2=16,
雙曲線的一條漸近線方程為:bx+ay=0,圓(x-2)2+y2=3的圓心(2,0),半徑為$\sqrt{3}$.
漸近線與圓(x-2)2+y2=3相切,
可得:$\frac{|2b|}{\sqrt{{a}^{2}+^{2}}}=\sqrt{3}$,
解得b=2$\sqrt{3}$,a=2,
所求的雙曲線方程為:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.
故選:C.

點(diǎn)評 本題考查圓的方程與雙曲線方程的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x、y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤4}\\{y+2≥0}\end{array}\right.$,則z=2x+y的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列各函數(shù)的定義域.
(1)y=x${\;}^{-\frac{3}{2}}$;
(2)y=$\sqrt{9-{3}^{x}}$;
(3)y=1n(3x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知正方體的不在同一表面的兩個(gè)頂點(diǎn)A(-1,2,-1),B(3,-2,3),則正方體的棱長等于( 。
A.4B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校在2 015年11月份的高三期中考試后,隨機(jī)地抽取了50名學(xué)生的數(shù)學(xué)成績并進(jìn)行了分析,結(jié)果這50名同學(xué)的成績?nèi)拷橛?0分到140分之間.現(xiàn)將結(jié)果按如下方式分為6組,第一組[80,90),第二組[90,100),…第六組[130,140],得到如圖所示的頻率分布直方圖.
(Ⅰ)試估計(jì)該校數(shù)學(xué)的平均成績(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(Ⅱ)這50名學(xué)生中成績在120分以上的同學(xué)中任意抽取3人,該3人在130分(含130分)以上的人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知曲線x2+y2=2(x≥0,y≥0)和x+y=$\sqrt{2}$圍成的封閉圖形為Г,則圖形Г繞y軸旋轉(zhuǎn)一周后所形成幾何體的表面積為(  )
A.$\frac{2\sqrt{2}}{3}$B.(8+4$\sqrt{2}$)πC.(8+2$\sqrt{2}$)πD.(4+2$\sqrt{2}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f(x)是定義在(-π,0)∪(0,π)的奇函數(shù),其導(dǎo)函數(shù)為f′(x),且$f({\frac{π}{2}})=0$,當(dāng)x∈(0,π)時(shí),f′(x)sinx-f(x)cosx<0,則關(guān)于x的不等式$f(x)<2f({\frac{π}{6}})sinx$的解集為( 。
A.$({-\frac{π}{6},0})∪({0,\frac{π}{6}})$B.$({-\frac{π}{6},0})∪({\frac{π}{6},π})$C.$({-\frac{π}{6},0})∪({\frac{π}{6},\frac{π}{2}})$D.$({-π,-\frac{π}{6}})∪({0,\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是一個(gè)三棱錐的三視圖,則該三棱錐的外接球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.橢圓$\frac{x^2}{9}+\frac{y^2}{25}=1$的離心率=$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案