(本小題滿分12分)
已知數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:對任意,都有,使得成等比數(shù)列.
(1)(2)詳見解析.
解析試題分析:(1)由和項(xiàng)求通項(xiàng),主要根據(jù)進(jìn)行求解. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fd/9/1yzdf4.png" style="vertical-align:middle;" />所以當(dāng)時(shí)又時(shí),所以(2)證明存在性問題,實(shí)質(zhì)是確定要使得成等比數(shù)列,只需要,即.而此時(shí),且所以對任意,都有,使得成等比數(shù)列.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fd/9/1yzdf4.png" style="vertical-align:middle;" />所以當(dāng)時(shí)又時(shí),所以(2)要使得成等比數(shù)列,只需要,即.而此時(shí),且所以對任意,都有,使得成等比數(shù)列.
考點(diǎn):由和項(xiàng)求通項(xiàng),等比數(shù)列
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
各項(xiàng)都是正數(shù)的等比數(shù)列{an},公比q1,a5,a7,a8成等差數(shù)列,則公比q=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列的各項(xiàng)均為正數(shù),且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,已知(,為常數(shù)),,,(1)求數(shù)列的通項(xiàng)公式;(2)求所有滿足等式成立的正整數(shù),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足.
(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證:對任意,有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,.
(1)求,的值;
(2)求證:是等比數(shù)列,并求的通項(xiàng)公式;
(3)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對一切恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項(xiàng)。
(1)求證:是等比數(shù)列,并求出的通項(xiàng)公式;
(2)證明:對任意的;
(3)證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2014·隨州模擬)已知等比數(shù)列{an}滿足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若不等式Sn>kan-2對一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和,
(1)求通項(xiàng)公式an;(2)令,求數(shù)列{bn}前n項(xiàng)的和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com