【題目】已知曲線的方程為,過(guò)原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過(guò)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過(guò)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為……,如此下去,一般地,過(guò)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn).

1)指出,并求的關(guān)系式;

2)求的通項(xiàng)公式,并指出點(diǎn)列,,……,,……向哪一點(diǎn)無(wú)限接近?說(shuō)明理由;

3)令,數(shù)列的前項(xiàng)和為,設(shè),求所有可能的乘積的和.

【答案】1;(2,;向點(diǎn)無(wú)限接近;(3.

【解析】

1)設(shè)點(diǎn),則點(diǎn),利用曲線的相交關(guān)系,聯(lián)立方程組求解,即可得出結(jié)果;

2)先由(1)的結(jié)果,得到,推出,再由累加法,即可求出通項(xiàng)公式;求數(shù)列的極限,結(jié)合雙曲線的方程,即可求出無(wú)限接近的點(diǎn);

3)先由(2)得到,求出,利用矩陣研究,根據(jù)等比數(shù)列的求和公式,以及分組求和的方法,即可求出結(jié)果.

1)由題意得,,設(shè)點(diǎn),則點(diǎn),

由題意得,所以;

2)分別用、代換中的,得

,解得:,

所以,,,

以上各式相加得:

,所以;

因?yàn)?/span>,由代入可得:;

所以點(diǎn)列,……,,……向點(diǎn)無(wú)限接近;

3)因?yàn)?/span>,所以其前項(xiàng)和,

因此,,

將所得的積排成如下矩陣:,

設(shè)矩陣的各項(xiàng)和為.

在矩陣的左下方補(bǔ)上相應(yīng)的數(shù)可得:

矩陣中第一行的各數(shù)和,

矩陣中第二行的各數(shù)和

……

矩陣中第行的各數(shù)和,

從而矩陣中所有數(shù)之和為

;

因此,所有可能的乘積的和為:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓長(zhǎng)軸的一個(gè)端點(diǎn)是拋物線的焦點(diǎn),且橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離是1

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若是橢圓的左右端點(diǎn),為原點(diǎn),是橢圓上異于的任意一點(diǎn),直線分別交軸于,問(wèn)是否為定值,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一容積為的正方體容器,在棱、和面對(duì)角線的中點(diǎn)各有一小孔、、,若此容器可以任意放置,則其可裝水的最大容積是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知美國(guó)蘋(píng)果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1萬(wàn)部還需要另外投入16美元,設(shè)蘋(píng)果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)萬(wàn)部并全部銷(xiāo)售完,每萬(wàn)部的銷(xiāo)售收入為萬(wàn)元,且.

(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)部)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬(wàn)部時(shí),蘋(píng)果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)若,求曲線處的切線方程;

(2)設(shè)函數(shù)若至少存在一個(gè),使得成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,點(diǎn)分別為的中點(diǎn).

1)求證:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)有相同的公切線,則實(shí)數(shù)a的取值范圍為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直棱柱中,BC的中點(diǎn),點(diǎn)E在棱上運(yùn)動(dòng).

(1)證明

(2)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案