12.已知凸n邊形的內(nèi)角和為f(n),則凸n+1邊形的內(nèi)角和f(n+1)=f(n)+180°.

分析 直接利用凸邊形的內(nèi)角和的度數(shù)求出f(n),然后求解f(n+1)與f(n)的關(guān)系.

解答 解:凸邊形的內(nèi)角和的度數(shù)f(n)=(n-2)180°,
所以f(n+1)=(n-1)180°=(n-2)180°+180°=f(n)+180°.
故答案為:180°.

點(diǎn)評 本題考查凸邊形的內(nèi)角和的度數(shù)的應(yīng)用,函數(shù)的解析式的關(guān)系,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市為增強(qiáng)市民的環(huán)境保護(hù)意識,某市組織了一批年齡在[20,45]歲的志愿者為市民展開宣傳活動,現(xiàn)從這批志愿者中隨機(jī)抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],各組人數(shù)的頻率分布直方圖如圖所示,現(xiàn)從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加宣傳活動.
(Ⅰ)應(yīng)從第3,4,5組各抽取多少名志愿者?
(Ⅱ)在這6名志愿者中隨機(jī)抽取2名擔(dān)任宣傳后動負(fù)責(zé)人,求第3組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.集合A={x||x|<1},B={x|2x<1},則A∩B=(  )
A.(-1,1)B.(0,1)C.$(0,\frac{1}{2})$D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若方程x2+y2-4x+2y+5k=0表示圓,則k的取值范圍是(  )
A.k>1B.k<1C.k≥1D.k≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.線性約束條件$\left\{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{x+y-1≤0}\end{array}\right.$表示平面區(qū)域D,若在區(qū)域D上有無窮多個點(diǎn)(x,y),可使目標(biāo)函數(shù)z=x+my取得最大值,則m=1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某商場經(jīng)營一批進(jìn)價是30元/臺的小商品,在市場試驗(yàn)中發(fā)現(xiàn),此商品的銷售單價x(x取整數(shù))元與日銷售量y臺之間有如表關(guān)系:
x35404550
y56412811
(1)畫出散點(diǎn)圖,并判斷y與x是否具有線性相關(guān)關(guān)系?
(2)求日銷售量y對銷售單價x的線性回歸方程;
(3)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)(1)寫出P關(guān)于x的函數(shù)關(guān)系式,并預(yù)測當(dāng)銷售單價x為多少元時,才能獲得最大日銷售利潤.($\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f(x)=$\frac{ax-1}{x-a}$在(-∞,-1)上是增函數(shù),則a的取值范圍是a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在底面是菱形的四棱錐P-ABCD中,∠BAD=60°,AB=2,PA=PC=2,PB=PD=$\sqrt{2}$.
(1)若E為線段PD的中點(diǎn),求證:PB∥平面AEC;
(2)若F為線段PA上的點(diǎn),且$\frac{PF}{FA}$=λ,則λ為何值時,PA⊥平面BDF?
(3)若G、H、M、N分別為線段AB、CD、PC、PB的中點(diǎn),求五面體MNGBCH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知{an}是等差數(shù)列,Sn是其前n項(xiàng)和.已知a1+a3=16,S4=28.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)當(dāng)n取何值時Sn最大,并求出這個最大值.

查看答案和解析>>

同步練習(xí)冊答案