6.如圖,三棱錐A-BCD中,E是AC中點(diǎn),F(xiàn)在AD上,且2AF=FD,若三棱錐A-BEF的體積是2,則四棱錐B-ECDF的體積為10.

分析 根據(jù)三角形的面積公式得出△AEF與△ACD的面積比,得出三棱錐B-AEF與三棱錐B-ACD的體積比,利用作差法求出四棱錐的體積.

解答 解:∵S△AEF=$\frac{1}{2}AE•AF•sin∠CAD$,
S△ACD=$\frac{1}{2}AC•AD•sin∠CAD$=$\frac{1}{2}•2AE•3AF•sin∠CAD$=6S△ACD
∴VB-ACD=6VB-AEF=6VA-BEF=12.
∴VB-ECDF=VB-ACD-VB-AEF=10.
故答案為:10.

點(diǎn)評 本題考查了棱錐的體積公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-ax+$\frac{x}$(a,b∈R),且對任意x>0,都有f(x)+f($\frac{1}{x}$)=0.
(Ⅰ)求a,b的關(guān)系式;
(Ⅱ)若f(x)存在兩個極值點(diǎn)x1,x2,且x1<x2,求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明f($\frac{a^2}{2}$)>0,并指出函數(shù)y=f(x)零點(diǎn)的個數(shù)(要求說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,有下列五個說法:
①S6為Sn的最大值,②S11>0,③S12<0,④S13<0,⑤S8-S5>0,
其中說法正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)上存在一點(diǎn)P,與坐標(biāo)原點(diǎn)O,右焦點(diǎn)F2構(gòu)成正三角形,則雙曲線的離心率為(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{4}{5}t}\\{y=-1-\frac{3}{5}t}\end{array}\right.$(t為參數(shù)),求直線l被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.用反證法證明命題“三角形的內(nèi)角中最多有一個內(nèi)角是鈍角”時(shí)應(yīng)先假設(shè)( 。
A.沒有一個內(nèi)角是鈍角B.至少有一個內(nèi)角是鈍角
C.至少有兩個內(nèi)角是銳角D.至少有兩個內(nèi)角是鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示的程序框圖中,若f(x)=sinx,g(x)=cosx,x∈[0,$\frac{π}{2}$],且h(x)≥m恒成立,則m的最大值是( 。
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在北京召開的國際數(shù)學(xué)家大會會標(biāo)如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是$\frac{1}{25}$,則cos2θ-sinθ2+2=( 。
A.$\frac{57}{25}$B.$\frac{24}{25}$C.-$\frac{57}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{{1-{a^2}}}$=1(a>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,若存在k,使直線y=k(x-1)與雙曲線的右支交于P,Q兩點(diǎn),且△PF1Q的周長為8,則雙曲線的斜率為正的漸近線的傾斜角的取值范圍是(  )
A.($\frac{π}{3}$,$\frac{π}{2}$)B.($\frac{π}{6}$,$\frac{π}{2}$)C.(0,$\frac{π}{6}$)D.(0,$\frac{π}{3}$)

查看答案和解析>>

同步練習(xí)冊答案