【題目】若函數(shù),
(1)若函數(shù)為奇函數(shù),求m的值;
(2)若函數(shù)在上是增函數(shù),求實數(shù)m的取值范圍;
(3)若函數(shù)在上的最小值為,求實數(shù)m的值.
【答案】(1)
(2)
(3)或
【解析】
(1)由奇函數(shù)得到,代入計算得到答案.
(2)討論,,三種情況,分別計算得到答案.
(3)根據(jù)(2)的討論,分別計算函數(shù)的最小值,對比范圍得到答案.
(1)是奇函數(shù),定義域為
,令,得,
經(jīng)檢驗:時,.
(2)①時,開口向上,對稱軸為,
在上單調(diào)遞增
②時,開口向下,對稱軸為,
在上單調(diào)遞增,在上單調(diào)遞減,
在上單調(diào)遞增,,.
③時,
函數(shù)在和上單調(diào)遞增,則上單調(diào)遞減,
在上不單調(diào),不滿足題意.
綜上所述:的取值范圍是.
(3)由(2)可知
①時,,在上單調(diào)遞增,
解得或
②時,,
在上單調(diào)遞增,在上單調(diào)遞減,
當(dāng)即時,
解得:(舍)
當(dāng)即時,
解得:,,
③時,
函數(shù)在和上單調(diào)遞增,則上單調(diào)遞減,
當(dāng)時,
解得:(舍)
綜上所述:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠人員及工資構(gòu)成如下表:
人員 | 經(jīng)理 | 管理人員 | 高級技工 | 工人 | 學(xué)徒 | 合計 |
周工資/元 | 2200 | 1250 | 1220 | 1200 | 490 | |
人數(shù) | 1 | 6 | 5 | 10 | 1 | 23 |
(1)指出這個問題中的眾數(shù)、中位數(shù)、平均數(shù).
(2)這個問題中,平均數(shù)能客觀地反映該工廠的工資水平嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市兩所高級中學(xué)聯(lián)合在暑假組織全體教師外出旅游,活動分為兩條線路:華東五市游和長白山之旅,且每位教師至多參加了其中的一條線路.在參加活動的教師中,高一教師占42.5%,高二教師占47.5%,高三教師占10%.參加華東五市游的教師占參加活動總?cè)藬?shù)的,且該組中,高一教師占50%,高二教師占40%,高三教師占10%.為了了解各條線路不同年級的教師對本次活動的滿意程度,現(xiàn)用分層隨機(jī)抽樣的方法從參加活動的全體教師中抽取一個容量為200的樣本.試確定:
(1)參加長白山之旅的高一教師、高二教師、高三教師在該組分別所占的比例;
(2)參加長白山之旅的高一教師、高二教師、高三教師分別應(yīng)抽取的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年元旦假期,高三的8名同學(xué)準(zhǔn)備拼車去旅游,其中班、班,班、班每班各兩名,分乘甲乙兩輛汽車,每車限坐4名同學(xué)乘同一輛車的4名同學(xué)不考慮位置,其中班兩位同學(xué)是孿生姐妹,需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來自同一個班的乘坐方式共有
A. 18種 B. 24種 C. 48種 D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:直線平面,直線平行四邊形,四棱錐的頂點在平面上, ,,,, ,,、分別是與的中點.
(Ⅰ)求證:平面 ;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分:方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機(jī)會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計得分的均值較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點,.
(1)求證:∥平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com